
Advances in Efficient Probabilistic Reasoning with
Answer Set Semantics

Thomas Eiter, Markus Hecher, Rafael Kiesel

Vienna University of Technology

funded by FWF project W1255-N23

5th of October 2021

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Probabilistic Stream Reasoning

Interest in quantitative reasoning on top of Stream Reasoning:

I Probabilistic Reasoning [Nickles and Mileo, 2014]

I wLARS [Eiter and Kiesel, 2020] for

I Probabilistic Reasoning

I Preferential Reasoning

I Algebraic Model Counting

Thomas Eiter, Markus Hecher, Rafael Kiesel 1 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Probabilistic Stream Reasoning

Interest in quantitative reasoning on top of Stream Reasoning:
I Probabilistic Reasoning [Nickles and Mileo, 2014]

I wLARS [Eiter and Kiesel, 2020] for

I Probabilistic Reasoning

I Preferential Reasoning

I Algebraic Model Counting

Thomas Eiter, Markus Hecher, Rafael Kiesel 1 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Probabilistic Stream Reasoning

Interest in quantitative reasoning on top of Stream Reasoning:
I Probabilistic Reasoning [Nickles and Mileo, 2014]

I wLARS [Eiter and Kiesel, 2020] for

I Probabilistic Reasoning

I Preferential Reasoning

I Algebraic Model Counting

Thomas Eiter, Markus Hecher, Rafael Kiesel 1 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Probabilistic Reasoning via Knowledge Compilation

I “Compile” the logical theory into a tractable circuit
representation like d-DNNF or SDD

 compilers like c2d [Darwiche, 2004] work on CNFs

Two challenges:

I Logical connectives from the temporal domain

I Answer set semantics

↪→ Our recent work

Thomas Eiter, Markus Hecher, Rafael Kiesel 2 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Probabilistic Reasoning via Knowledge Compilation

I “Compile” the logical theory into a tractable circuit
representation like d-DNNF or SDD

 compilers like c2d [Darwiche, 2004] work on CNFs

Two challenges:

I Logical connectives from the temporal domain

I Answer set semantics

↪→ Our recent work

Thomas Eiter, Markus Hecher, Rafael Kiesel 2 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Probabilistic Reasoning via Knowledge Compilation

I “Compile” the logical theory into a tractable circuit
representation like d-DNNF or SDD

 compilers like c2d [Darwiche, 2004] work on CNFs

Two challenges:

I Logical connectives from the temporal domain

I Answer set semantics

↪→ Our recent work

Thomas Eiter, Markus Hecher, Rafael Kiesel 2 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Probabilistic Reasoning via Knowledge Compilation

I “Compile” the logical theory into a tractable circuit
representation like d-DNNF or SDD

 compilers like c2d [Darwiche, 2004] work on CNFs

Two challenges:

I Logical connectives from the temporal domain

I Answer set semantics

↪→ Our recent work

Thomas Eiter, Markus Hecher, Rafael Kiesel 2 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Probabilistic Reasoning via Knowledge Compilation

I “Compile” the logical theory into a tractable circuit
representation like d-DNNF or SDD

 compilers like c2d [Darwiche, 2004] work on CNFs

Two challenges:

I Logical connectives from the temporal domain

I Answer set semantics

↪→ Our recent work

Thomas Eiter, Markus Hecher, Rafael Kiesel 2 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Probabilistic Reasoning via Knowledge Compilation

I “Compile” the logical theory into a tractable circuit
representation like d-DNNF or SDD

 compilers like c2d [Darwiche, 2004] work on CNFs

Two challenges:

I Logical connectives from the temporal domain

I Answer set semantics

↪→ Our recent work

Thomas Eiter, Markus Hecher, Rafael Kiesel 2 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Approach

I Start with normal answer set program Π

I General strategy:

Break
Cycles

Clark
Completion

Knowledge
Compilation Evaluation

Π Π′ φ C p

I Goal: Perform cycle breaking and Clark completion in such a
way that compilation and evaluation are fast

Thomas Eiter, Markus Hecher, Rafael Kiesel 3 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Approach

I Start with normal answer set program Π

I General strategy:

Break
Cycles

Clark
Completion

Knowledge
Compilation Evaluation

Π Π′ φ C p

I Goal: Perform cycle breaking and Clark completion in such a
way that compilation and evaluation are fast

Thomas Eiter, Markus Hecher, Rafael Kiesel 3 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Approach

I Start with normal answer set program Π

I General strategy:

Break
Cycles

Clark
Completion

Knowledge
Compilation Evaluation

Π Π′ φ C p

I Goal: Perform cycle breaking and Clark completion in such a
way that compilation and evaluation are fast

Thomas Eiter, Markus Hecher, Rafael Kiesel 3 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth I

Definition (Tree decomposition, Treewidth)
Let G be a graph. Then a tree decomposition is a pair (T , χ),
where T is a tree and χ is a labeling of V (T) by subsets of V (G)
s.t.
I for all nodes v ∈ V (G) there is t ∈ V (T) s.t. v ∈ χ(t);
I for every edge {v1, v2} ∈ V (E) there exists t ∈ V (T) s.t.

v1, v2 ∈ χ(t);
I for all nodes v ∈ V (G) the set of nodes
{t ∈ V (T) | v ∈ χ(t)} forms a (connected) subtree of T .

The width of (T , χ) is maxt∈V ′ |χ(t)| − 1. The treewidth of a
graph is the minimal width of any of its tree decompositions.

Thomas Eiter, Markus Hecher, Rafael Kiesel 4 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth II
CNF:

a ∨ b

¬b ∨ c ∨ d

¬c ∨ e

¬d ∨ f

Graph:
a b

c

d

e

f

Tree Decomposition:
{a, b} {b, c , d}

{c , e}

{d , f }

Thomas Eiter, Markus Hecher, Rafael Kiesel 5 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth II
CNF:

a ∨ b

¬b ∨ c ∨ d

¬c ∨ e

¬d ∨ f

Graph:
a b

c

d

e

f

Tree Decomposition:
{a, b} {b, c , d}

{c , e}

{d , f }

Thomas Eiter, Markus Hecher, Rafael Kiesel 5 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth II
CNF:

a ∨ b

¬b ∨ c ∨ d

¬c ∨ e

¬d ∨ f

Graph:
a b

c

d

e

f

Tree Decomposition:
{a, b} {b, c , d}

{c , e}

{d , f }

Thomas Eiter, Markus Hecher, Rafael Kiesel 5 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth II
CNF:

a ∨ b

¬b ∨ c ∨ d

¬c ∨ e

¬d ∨ f

Graph:
a b

c

d

e

f

Tree Decomposition:
{a, b} {b, c , d}

{c , e}

{d , f }

Thomas Eiter, Markus Hecher, Rafael Kiesel 5 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth II
CNF:

a ∨ b

¬b ∨ c ∨ d

¬c ∨ e

¬d ∨ f

Graph:
a b

c

d

e

f

Tree Decomposition:
{a, b} {b, c , d}

{c , e}

{d , f }

Thomas Eiter, Markus Hecher, Rafael Kiesel 5 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth II
CNF:

a ∨ b

¬b ∨ c ∨ d

¬c ∨ e

¬d ∨ f

Graph:
a b

c

d

e

f

Tree Decomposition:
{a, b} {b, c , d}

{c , e}

{d , f }

Thomas Eiter, Markus Hecher, Rafael Kiesel 5 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth II
CNF:

a ∨ b

¬b ∨ c ∨ d

¬c ∨ e

¬d ∨ f

Graph:
a b

c

d

e

f

Tree Decomposition:
{a, b} {b, c , d}

{c , e}

{d , f }

Thomas Eiter, Markus Hecher, Rafael Kiesel 5 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth and Knowledge Compilation

I Assumption: Treewidth correlates with the time needed for
knowledge compilation

I Why should that be true?

I Knowledge compilation for a CNF φ with treewidth k feasible
in O(|φ|2k) [Darwiche, 2004]

I There exist formulas φ with treewidth k s.t. the smallest SDD
has size O(|φ|2k) [Amarilli et al., 2018]

I Tree decomposition-based variable selection performs
well [Korhonen and Järvisalo, 2021]

Thomas Eiter, Markus Hecher, Rafael Kiesel 6 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth and Knowledge Compilation

I Assumption: Treewidth correlates with the time needed for
knowledge compilation

I Why should that be true?

I Knowledge compilation for a CNF φ with treewidth k feasible
in O(|φ|2k) [Darwiche, 2004]

I There exist formulas φ with treewidth k s.t. the smallest SDD
has size O(|φ|2k) [Amarilli et al., 2018]

I Tree decomposition-based variable selection performs
well [Korhonen and Järvisalo, 2021]

Thomas Eiter, Markus Hecher, Rafael Kiesel 6 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth and Knowledge Compilation

I Assumption: Treewidth correlates with the time needed for
knowledge compilation

I Why should that be true?

I Knowledge compilation for a CNF φ with treewidth k feasible
in O(|φ|2k) [Darwiche, 2004]

I There exist formulas φ with treewidth k s.t. the smallest SDD
has size O(|φ|2k) [Amarilli et al., 2018]

I Tree decomposition-based variable selection performs
well [Korhonen and Järvisalo, 2021]

Thomas Eiter, Markus Hecher, Rafael Kiesel 6 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth and Knowledge Compilation

I Assumption: Treewidth correlates with the time needed for
knowledge compilation

I Why should that be true?

I Knowledge compilation for a CNF φ with treewidth k feasible
in O(|φ|2k) [Darwiche, 2004]

I There exist formulas φ with treewidth k s.t. the smallest SDD
has size O(|φ|2k) [Amarilli et al., 2018]

I Tree decomposition-based variable selection performs
well [Korhonen and Järvisalo, 2021]

Thomas Eiter, Markus Hecher, Rafael Kiesel 6 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Probabilistic Stream Reasoning
Approach

Treewidth and Knowledge Compilation

I Assumption: Treewidth correlates with the time needed for
knowledge compilation

I Why should that be true?

I Knowledge compilation for a CNF φ with treewidth k feasible
in O(|φ|2k) [Darwiche, 2004]

I There exist formulas φ with treewidth k s.t. the smallest SDD
has size O(|φ|2k) [Amarilli et al., 2018]

I Tree decomposition-based variable selection performs
well [Korhonen and Järvisalo, 2021]

Thomas Eiter, Markus Hecher, Rafael Kiesel 6 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Cycle-Breaking Approaches

I We need a model-preserving cycle-breaking
↪→ disqualifies [Hecher, 2020], [Lin and Zhao, 2003]

I Other cycle-breakings:

I lp2sat [Janhunen, 2004]:
Resulting treewidth is O(k · log(|C |))

I ProbLog [Mantadelis and Janssens, 2010]:
Resulting treewidth is O(k · 2|C |)

where |C | is the size of the largest strongly connected
component (SCC) of the dependency graph of the program

Thomas Eiter, Markus Hecher, Rafael Kiesel 7 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Cycle-Breaking Approaches

I We need a model-preserving cycle-breaking
↪→ disqualifies [Hecher, 2020], [Lin and Zhao, 2003]

I Other cycle-breakings:

I lp2sat [Janhunen, 2004]:
Resulting treewidth is O(k · log(|C |))

I ProbLog [Mantadelis and Janssens, 2010]:
Resulting treewidth is O(k · 2|C |)

where |C | is the size of the largest strongly connected
component (SCC) of the dependency graph of the program

Thomas Eiter, Markus Hecher, Rafael Kiesel 7 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Cycle-Breaking Approaches

I We need a model-preserving cycle-breaking
↪→ disqualifies [Hecher, 2020], [Lin and Zhao, 2003]

I Other cycle-breakings:

I lp2sat [Janhunen, 2004]:
Resulting treewidth is O(k · log(|C |))

I ProbLog [Mantadelis and Janssens, 2010]:
Resulting treewidth is O(k · 2|C |)

where |C | is the size of the largest strongly connected
component (SCC) of the dependency graph of the program

Thomas Eiter, Markus Hecher, Rafael Kiesel 7 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Cycle-Breaking Approaches

I We need a model-preserving cycle-breaking
↪→ disqualifies [Hecher, 2020], [Lin and Zhao, 2003]

I Other cycle-breakings:

I lp2sat [Janhunen, 2004]:
Resulting treewidth is O(k · log(|C |))

I ProbLog [Mantadelis and Janssens, 2010]:
Resulting treewidth is O(k · 2|C |)

where |C | is the size of the largest strongly connected
component (SCC) of the dependency graph of the program

Thomas Eiter, Markus Hecher, Rafael Kiesel 7 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Our Cycle-Breaking

I The largest SCC of the dependency graph may be large

I Observation: We can achieve a smaller increase when the
cyclicity of the dependency graph is low

I Idea: Split the strongly connected components into subgraphs
of low cyclicity

Thomas Eiter, Markus Hecher, Rafael Kiesel 8 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Our Cycle-Breaking

I The largest SCC of the dependency graph may be large

I Observation: We can achieve a smaller increase when the
cyclicity of the dependency graph is low

I Idea: Split the strongly connected components into subgraphs
of low cyclicity

Thomas Eiter, Markus Hecher, Rafael Kiesel 8 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Our Cycle-Breaking

I The largest SCC of the dependency graph may be large

I Observation: We can achieve a smaller increase when the
cyclicity of the dependency graph is low

I Idea: Split the strongly connected components into subgraphs
of low cyclicity

Thomas Eiter, Markus Hecher, Rafael Kiesel 8 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Component-Boosted Backdoor Size

Definition (cbs(G))
Let G be a digraph. Then the component-boosted backdoor size of
G , denoted cbs(G), is
I 1, if G is acyclic (which includes V (G) = ∅)

I 2, if G is a polytree, i.e. the undirected version of G is
connected and acyclic

I max{cbs(C) | C ∈ SCC(G)}, if G is cyclic but not strongly
connected

I min{cbs(G \ S) · (|S |+ 1) | S ⊆ V (G),S 6= ∅} otherwise

Intuitively, cbs(G) measures the cyclicity of G by decomposition
into “easy to solve” subgraphs

Thomas Eiter, Markus Hecher, Rafael Kiesel 9 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Component-Boosted Backdoor Size

Definition (cbs(G))
Let G be a digraph. Then the component-boosted backdoor size of
G , denoted cbs(G), is
I 1, if G is acyclic (which includes V (G) = ∅)
I 2, if G is a polytree, i.e. the undirected version of G is

connected and acyclic

I max{cbs(C) | C ∈ SCC(G)}, if G is cyclic but not strongly
connected

I min{cbs(G \ S) · (|S |+ 1) | S ⊆ V (G),S 6= ∅} otherwise

Intuitively, cbs(G) measures the cyclicity of G by decomposition
into “easy to solve” subgraphs

Thomas Eiter, Markus Hecher, Rafael Kiesel 9 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Component-Boosted Backdoor Size

Definition (cbs(G))
Let G be a digraph. Then the component-boosted backdoor size of
G , denoted cbs(G), is
I 1, if G is acyclic (which includes V (G) = ∅)
I 2, if G is a polytree, i.e. the undirected version of G is

connected and acyclic
I max{cbs(C) | C ∈ SCC(G)}, if G is cyclic but not strongly

connected

I min{cbs(G \ S) · (|S |+ 1) | S ⊆ V (G),S 6= ∅} otherwise

Intuitively, cbs(G) measures the cyclicity of G by decomposition
into “easy to solve” subgraphs

Thomas Eiter, Markus Hecher, Rafael Kiesel 9 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Component-Boosted Backdoor Size

Definition (cbs(G))
Let G be a digraph. Then the component-boosted backdoor size of
G , denoted cbs(G), is
I 1, if G is acyclic (which includes V (G) = ∅)
I 2, if G is a polytree, i.e. the undirected version of G is

connected and acyclic
I max{cbs(C) | C ∈ SCC(G)}, if G is cyclic but not strongly

connected
I min{cbs(G \ S) · (|S |+ 1) | S ⊆ V (G),S 6= ∅} otherwise

Intuitively, cbs(G) measures the cyclicity of G by decomposition
into “easy to solve” subgraphs

Thomas Eiter, Markus Hecher, Rafael Kiesel 9 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Component-Boosted Backdoor Size

Definition (cbs(G))
Let G be a digraph. Then the component-boosted backdoor size of
G , denoted cbs(G), is
I 1, if G is acyclic (which includes V (G) = ∅)
I 2, if G is a polytree, i.e. the undirected version of G is

connected and acyclic
I max{cbs(C) | C ∈ SCC(G)}, if G is cyclic but not strongly

connected
I min{cbs(G \ S) · (|S |+ 1) | S ⊆ V (G),S 6= ∅} otherwise

Intuitively, cbs(G) measures the cyclicity of G by decomposition
into “easy to solve” subgraphs

Thomas Eiter, Markus Hecher, Rafael Kiesel 9 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Cycle-Breaking Approaches
Our Cycle-Breaking

Main Result

Theorem
For every answer set program Π, there exists an equivalent program
Π′ such that
1. the answer sets are preserved bijectively
2. Π′ is tight/acyclic
3. the treewidth of Π′ is less or equal to k · cbs(DEP(Π)), where

k is the treewidth of Π.

Thomas Eiter, Markus Hecher, Rafael Kiesel 10 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Benchmark Settings
Results

Scenarios

S1 Probabilistic reasoning: Computing probabilities for atoms of
Problog programs

S2 Counting (small number of solutions on average): Counting
the number of different paths between stations in public
transport networks

S3 Counting (many solutions on average): Counting conflict-free
extensions in abstract argumentation

Thomas Eiter, Markus Hecher, Rafael Kiesel 11 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Benchmark Settings
Results

Solvers

I Problog, version 2.1.0.42, run with arguments “-k sdd”

I clingo, version 5.4.0, run with arguments “-q -n 0”

I lp2sat+c2d: cycle breaking due to [Bomanson, 2017] followed
by compilation using c2d [Darwiche, 2004]

I aspmc+c2d: our cycle breaking followed by compilation using
c2d [Darwiche, 2004]

Thomas Eiter, Markus Hecher, Rafael Kiesel 12 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Benchmark Settings
Results

Results S1

0 100 200 30050 150 250
number of instances

0

200

400

600

800

1000

1200

1400

1600

1800

w
al

l c
lo

ck
 ti

m
e

[s
]

aspmc+c2d
problog
lp2sat+c2d*
clingo*

Thomas Eiter, Markus Hecher, Rafael Kiesel 13 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Benchmark Settings
Results

Results S2

800 1200100 1300 1400200 1100300 1500400 1000500 600 900700
number of instances

0

200

400

600

800

1000

1200

1400

1600

1800

w
al

l c
lo

ck
 ti

m
e

[s
]

aspmc+c2d & clingo
clingo
aspmc+c2d
lp2sat+c2d

Thomas Eiter, Markus Hecher, Rafael Kiesel 14 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Benchmark Settings
Results

Results S3

solver tw ranges
configuration

∑
0-300 300-600 >600 unique time[h]

aspmc+c2d 241 185 26 30 12 45.16
lp2sat+c2d 182 182 0 0 0 73.85
clingo 144 97 21 26 2 94.78

Thomas Eiter, Markus Hecher, Rafael Kiesel 15 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Conclusion & Outlook

Conclusions & Outlook

I Treewidth-awareness seems to be important for probabilistic
reasoning

I Improved approach for probabilistic reasoning under ASP
semantics

I Need to tackle the time domain!
↪→ Compile once and reuse: great!
↪→ Already hard for one timepoint, how problematic for more?

Thomas Eiter, Markus Hecher, Rafael Kiesel 16 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Conclusion & Outlook

Conclusions & Outlook

I Treewidth-awareness seems to be important for probabilistic
reasoning

I Improved approach for probabilistic reasoning under ASP
semantics

I Need to tackle the time domain!
↪→ Compile once and reuse: great!
↪→ Already hard for one timepoint, how problematic for more?

Thomas Eiter, Markus Hecher, Rafael Kiesel 16 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Conclusion & Outlook

Conclusions & Outlook

I Treewidth-awareness seems to be important for probabilistic
reasoning

I Improved approach for probabilistic reasoning under ASP
semantics

I Need to tackle the time domain!
↪→ Compile once and reuse: great!
↪→ Already hard for one timepoint, how problematic for more?

Thomas Eiter, Markus Hecher, Rafael Kiesel 16 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Conclusion & Outlook

Antoine Amarilli, Florent Capelli, Mikaël Monet, and Pierre
Senellart.
Connecting knowledge compilation classes and width
parameters.
arXiv preprint arXiv:1811.02944, 2018.

Jori Bomanson.
lp2normal - A normalization tool for extended logic programs.
In LPNMR, volume 10377 of Lecture Notes in Computer
Science, pages 222–228. Springer, 2017.

Adnan Darwiche.
New advances in compiling CNF into decomposable negation
normal form.
In ECAI, pages 328–332. IOS Press, 2004.

Thomas Eiter and Rafael Kiesel.
Weighted lars for quantitative stream reasoning.

Thomas Eiter, Markus Hecher, Rafael Kiesel 16 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Conclusion & Outlook

In Proc. ECAI’20, 2020.

Markus Hecher.
Treewidth-aware Reductions of Normal ASP to SAT - Is
Normal ASP Harder than SAT after All?
In Proceedings of the 17th International Conference on
Principles of Knowledge Representation and Reasoning, pages
485–495, 9 2020.

Tomi Janhunen.
Representing normal programs with clauses.
In ECAI, volume 16, page 358. Citeseer, 2004.

Tuukka Korhonen and Matti Järvisalo.
Integrating tree decompositions into decision heuristics of
propositional model counters.

Thomas Eiter, Markus Hecher, Rafael Kiesel 16 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Conclusion & Outlook

In 27th International Conference on Principles and Practice of
Constraint Programming (CP 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

Fangzhen Lin and Jicheng Zhao.
On tight logic programs and yet another translation from
normal logic programs to propositional logic.
In International Joint Conference on Artificial Intelligence,
2003.

Theofrastos Mantadelis and Gerda Janssens.
Dedicated tabling for a probabilistic setting.
In Technical Communications of the 26th International
Conference on Logic Programming. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

Matthias Nickles and Alessandra Mileo.

Thomas Eiter, Markus Hecher, Rafael Kiesel 16 / 16

Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Conclusion & Outlook

Web stream reasoning using probabilistic answer set
programming.
In International Conference on Web Reasoning and Rule
Systems, pages 197–205. Springer, 2014.

Thomas Eiter, Markus Hecher, Rafael Kiesel 16 / 16

