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Probabilistic Reasoning via Knowledge Compilation

I “Compile” the logical theory into a tractable circuit
representation like d-DNNF or SDD

 compilers like c2d [Darwiche, 2004] work on CNFs

Two challenges:

I Logical connectives from the temporal domain

I Answer set semantics

↪→ Our recent work
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Treewidth I

Definition (Tree decomposition, Treewidth)
Let G be a graph. Then a tree decomposition is a pair (T , χ),
where T is a tree and χ is a labeling of V (T ) by subsets of V (G )
s.t.
I for all nodes v ∈ V (G ) there is t ∈ V (T ) s.t. v ∈ χ(t);
I for every edge {v1, v2} ∈ V (E ) there exists t ∈ V (T ) s.t.

v1, v2 ∈ χ(t);
I for all nodes v ∈ V (G ) the set of nodes
{t ∈ V (T ) | v ∈ χ(t)} forms a (connected) subtree of T .

The width of (T , χ) is maxt∈V ′ |χ(t)| − 1. The treewidth of a
graph is the minimal width of any of its tree decompositions.
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Treewidth and Knowledge Compilation

I Assumption: Treewidth correlates with the time needed for
knowledge compilation

I Why should that be true?

I Knowledge compilation for a CNF φ with treewidth k feasible
in O(|φ|2k) [Darwiche, 2004]

I There exist formulas φ with treewidth k s.t. the smallest SDD
has size O(|φ|2k) [Amarilli et al., 2018]

I Tree decomposition-based variable selection performs
well [Korhonen and Järvisalo, 2021]
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Cycle-Breaking Approaches

I We need a model-preserving cycle-breaking
↪→ disqualifies [Hecher, 2020], [Lin and Zhao, 2003]

I Other cycle-breakings:

I lp2sat [Janhunen, 2004]:
Resulting treewidth is O(k · log(|C |))

I ProbLog [Mantadelis and Janssens, 2010]:
Resulting treewidth is O(k · 2|C |)

where |C | is the size of the largest strongly connected
component (SCC) of the dependency graph of the program
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Our Cycle-Breaking

I The largest SCC of the dependency graph may be large

I Observation: We can achieve a smaller increase when the
cyclicity of the dependency graph is low

I Idea: Split the strongly connected components into subgraphs
of low cyclicity
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Component-Boosted Backdoor Size

Definition (cbs(G ))
Let G be a digraph. Then the component-boosted backdoor size of
G , denoted cbs(G ), is
I 1, if G is acyclic (which includes V (G ) = ∅)

I 2, if G is a polytree, i.e. the undirected version of G is
connected and acyclic

I max{cbs(C ) | C ∈ SCC(G )}, if G is cyclic but not strongly
connected

I min{cbs(G \ S) · (|S |+ 1) | S ⊆ V (G ),S 6= ∅} otherwise

Intuitively, cbs(G ) measures the cyclicity of G by decomposition
into “easy to solve” subgraphs
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Main Result

Theorem
For every answer set program Π, there exists an equivalent program
Π′ such that
1. the answer sets are preserved bijectively
2. Π′ is tight/acyclic
3. the treewidth of Π′ is less or equal to k · cbs(DEP(Π)), where

k is the treewidth of Π.

Thomas Eiter, Markus Hecher, Rafael Kiesel 10 / 16



Introduction
Treewidth-aware Cycle-Breaking

Experimental Results
Conclusion & Outlook

Benchmark Settings
Results

Scenarios

S1 Probabilistic reasoning: Computing probabilities for atoms of
Problog programs

S2 Counting (small number of solutions on average): Counting
the number of different paths between stations in public
transport networks

S3 Counting (many solutions on average): Counting conflict-free
extensions in abstract argumentation
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Results

Solvers

I Problog, version 2.1.0.42, run with arguments “-k sdd”

I clingo, version 5.4.0, run with arguments “-q -n 0”

I lp2sat+c2d: cycle breaking due to [Bomanson, 2017] followed
by compilation using c2d [Darwiche, 2004]

I aspmc+c2d: our cycle breaking followed by compilation using
c2d [Darwiche, 2004]
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Results S2
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Benchmark Settings
Results

Results S3

solver tw ranges
configuration

∑
0-300 300-600 >600 unique time[h]

aspmc+c2d 241 185 26 30 12 45.16
lp2sat+c2d 182 182 0 0 0 73.85
clingo 144 97 21 26 2 94.78
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Conclusions & Outlook

I Treewidth-awareness seems to be important for probabilistic
reasoning

I Improved approach for probabilistic reasoning under ASP
semantics

I Need to tackle the time domain!
↪→ Compile once and reuse: great!
↪→ Already hard for one timepoint, how problematic for more?
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