Weighted LARS for Quantitative Stream Reasoning

Thomas Eiter, Rafael Kiesel

Vienna University of Technology funded by FWF project W1255-N23

12th of September 2020

(Qualitative) Stream Reasoning with LARS Quantitative?

(Qualitative) Stream Reasoning with LARS

Does Peter visit Paris?

(Qualitative) Stream Reasoning with LARS Quantitative?

(Qualitative) Stream Reasoning with LARS

Does Peter visit Paris?

 \rightarrow \diamond in_{Paris}

(Qualitative) Stream Reasoning with LARS Quantitative?

(Qualitative) Stream Reasoning with LARS

- Does Peter visit Paris?
- \rightarrow \diamond in_{Paris}
- Did Peter visit Paris in the last three days?

(Qualitative) Stream Reasoning with LARS Quantitative?

(Qualitative) Stream Reasoning with LARS

- Does Peter visit Paris?
- $\rightarrow \diamond in_{Paris}$
- Did Peter visit Paris in the last three days?
- $\rightarrow \ \boxplus^{3} \diamondsuit in_{Paris}$

(Qualitative) Stream Reasoning with LARS Quantitative?

Quantitative?

How often does Peter visit Paris?

(Qualitative) Stream Reasoning with LARS Quantitative?

- How often does Peter visit Paris?
- \rightarrow Answer *quantitative* queries

- How often does Peter visit Paris?
- \rightarrow Answer *quantitative* queries
- Which journey is optimal w.r.t. how often Paris is visited?

- How often does Peter visit Paris?
- → Answer *quantitative* queries
- Which journey is optimal w.r.t. how often Paris is visited?
 - LARS Programs, consisting of rules α ← β with ASP-semantics give us answer streams

- How often does Peter visit Paris?
- → Answer *quantitative* queries
- Which journey is optimal w.r.t. how often Paris is visited?
 - LARS Programs, consisting of rules α ← β with ASP-semantics give us answer streams
 - Answer streams correspond to possible journeys

- How often does Peter visit Paris?
- → Answer *quantitative* queries
- Which journey is optimal w.r.t. how often Paris is visited?
 - LARS Programs, consisting of rules α ← β with ASP-semantics give us answer streams
 - Answer streams correspond to possible journeys
- \rightarrow Express *preferences* over answer streams

- How often does Peter visit Paris?
- → Answer *quantitative* queries
- Which journey is optimal w.r.t. how often Paris is visited?
 - LARS Programs, consisting of rules α ← β with ASP-semantics give us answer streams
 - Answer streams correspond to possible journeys
- \rightarrow Express *preferences* over answer streams
- Other quantitative questions (Probabilities, Weighted Model Counting, ...)

Introduction Weighted LARS Quantitative Stream Reasoning Conclusion & Outlook Results

Quantitative!

Quantitative extension(s) needed!

Ad Hoc?

Quantitative!

Quantitative extension(s) needed!

Ad Hoc?

Better: Framework! But, how? Need Computation

Weighted LARS LARS measure Results

Quantitative!

Quantitative extension(s) needed!

Ad Hoc?

Better: Framework! But, how? Need Computation

Weighted Logic!

Overload ({⊥, ⊤}, ∨, ∧, ⊥, ⊤) using semirings
 (R, ⊕, ⊗, e_⊕, e_⊗) and allow semiring values in formulas

Weighted LARS LARS measure Results

Semiring Semantics

Examples are

▶ $\mathbb{B} = (\{\bot, \top\}, \lor, \land, \bot, \top)$, the Boolean semiring.

 \hookrightarrow classical semantics

Semiring Semantics

Examples are

▶ $\mathbb{B} = (\{\bot, \top\}, \lor, \land, \bot, \top)$, the Boolean semiring. \hookrightarrow classical semantics

▶ $\mathbb{S} = (\mathbb{S}, +, \cdot, 0, 1)$, for $\mathbb{S} \in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$, the semiring over the numbers in \mathbb{S} .

 \hookrightarrow disjunction is sum, conjunction is multiplication

Semiring Semantics

Examples are

- ▶ $\mathbb{B} = (\{\bot, \top\}, \lor, \land, \bot, \top)$, the Boolean semiring. \hookrightarrow classical semantics
- ▶ $S = (S, +, \cdot, 0, 1)$, for $S \in \{N, Z, Q, R\}$, the semiring over the numbers in S.

 \hookrightarrow disjunction is sum, conjunction is multiplication

 \hookrightarrow disjunction is maximum, conjunction is sum

 Introduction
 Weighted LARS

 Quantitative Stream Reasoning
 LARS measure

 Conclusion & Outlook
 Results

Example II

How often does Peter visit Paris?

 Introduction
 Weighted LARS

 Quantitative Stream Reasoning
 LARS measure

 Conclusion & Outlook
 Results

Example II

How often does Peter visit Paris?
 → ◊in_{Paris} over the natural number semiring (ℕ, +, ·, 0, 1)

Introduction Weighted LARS
Quantitative Stream Reasoning
Conclusion & Outlook Results

LARS measure

• Goal: Assign answer streams a weight using α

LARS measure

- Goal: Assign answer streams a weight using α
- A LARS Measure μ is defined by a triple $\langle \Pi, \alpha, \mathcal{R} \rangle$, where
 - Π is a LARS program
 - α is a weighted LARS formula over \mathcal{R}
 - R is a semiring

LARS measure

• Goal: Assign answer streams a weight using α

• A LARS Measure μ is defined by a triple $\langle \Pi, \alpha, \mathcal{R} \rangle$, where

- Π is a LARS program
- α is a weighted LARS formula over \mathcal{R}
- *R* is a semiring

We set

 $\mu(\boldsymbol{S},t) = \left\{ \begin{array}{ll} \llbracket \alpha \rrbracket_{\mathcal{R}}(\boldsymbol{S},\boldsymbol{S},t) & \text{ if } \boldsymbol{S} \text{ is an answer stream of } \Pi \text{ at } t, \\ \boldsymbol{e}_{\oplus} & \text{ otherwise.} \end{array} \right.$

LARS measure

- Goal: Assign answer streams a weight using α
- A LARS Measure μ is defined by a triple $\langle \Pi, \alpha, \mathcal{R} \rangle$, where
 - П is a LARS program
 - α is a weighted LARS formula over \mathcal{R}
 - ► *R* is a semiring

We set

 $\mu(S, t) = \begin{cases} \llbracket \alpha \rrbracket_{\mathcal{R}}(S, S, t) & \text{if } S \text{ is an answer stream of } \Pi \text{ at } t, \\ e_{\oplus} & \text{otherwise.} \end{cases}$

S is an answer stream of Π at t if (S, S, t) satisfies Π and (S, S, t) is a minimal model of the reduct Π^{S,t} = {α ← β ∈ Π | (S, S, t) satisfies β}

Expressivity Results I

We use LARS measures for

Preferential Reasoning, i.e.,

choosing optimal answer streams w.r.t. some criteria

Introduction Weighted L Quantitative Stream Reasoning LARS meas Conclusion & Outlook Results

Expressivity Results I

We use LARS measures for

▶ Preferential Reasoning, i.e.,

choosing optimal answer streams w.r.t. some criteria

Probabilistic Reasoning, i.e.,

assigning answer streams a probability

Introduction Weighted L Quantitative Stream Reasoning LARS meas Conclusion & Outlook Results

Expressivity Results I

We use LARS measures for

▶ Preferential Reasoning, i.e.,

choosing optimal answer streams w.r.t. some criteria

Probabilistic Reasoning, i.e.,

assigning answer streams a probability

► Weighted Model Counting, i.e.,

aggregating the weights of all answer streams

Results

Expressivity Results I

We use LARS measures for

Preferential Reasoning by

choosing the answer streams with the highest value w.r.t. μ

Probabilistic Reasoning, i.e.,

assigning answer streams a probability

Weighted Model Counting, i.e.,

aggregating the weights of all answer streams

Results

Expressivity Results I

We use LARS measures for

Preferential Reasoning by

choosing the answer streams with the highest value w.r.t. μ

Probabilistic Reasoning by

normalizing μ to $\overline{\mu}$ and assigning an answer streams (S, t) the probability $\overline{\mu}(S, t)$

Weighted Model Counting, i.e.,

aggregating the weights of all answer streams

Results

Expressivity Results I

We use LARS measures for

Preferential Reasoning by

choosing the answer streams with the highest value w.r.t. μ

Probabilistic Reasoning by

normalizing μ to $\overline{\mu}$ and assigning an answer streams (S, t) the probability $\overline{\mu}(S, t)$

Weighted Model Counting by

computing the sum using \oplus of $\mu(S, t)$ for each answer streams (S, t)

Expressivity Results I

LARS measures enable subsumption of corresponding ASP-extensions

Preferential Reasoning, i.e.,

Weak Constraints [Buccafurri *et al.*, 2000] (part.) *asprin* [Brewka *et al.*, 2015]

▶ Probabilistic Reasoning, i.e.,

P-log [Baral *et al.*, 2009] LP^{MLN} [Lee and Yang, 2017] ProbLog [De Raedt *et al.*, 2007]

▶ Weighted Model Counting, i.e.,

aProbLog [Kimmig et al., 2011]

Expressivity Results II

- A plain fragment of LARS measures is expressively equivalent to
 - Weighted Automata (Finite State Machines with weighted transition function)
 - Rational Expressions (Regular Expressions with weights)

Expressivity Results II

- A plain fragment of LARS measures is expressively equivalent to
 - Weighted Automata (Finite State Machines with weighted transition function)
 - Rational Expressions (Regular Expressions with weights)
- Shows the expressiveness of LARS measures

Expressivity Results II

- A plain fragment of LARS measures is expressively equivalent to
 - Weighted Automata (Finite State Machines with weighted transition function)
 - Rational Expressions (Regular Expressions with weights)
- Shows the expressiveness of LARS measures
- Gives a rule-based alternative for specification via automata

Introduction Weighted LAI Quantitative Stream Reasoning Conclusion & Outlook Results

Complexity Results

The evaluation of LARS measures

- is PSPACE-hard for any non-trivial semiring (LARS is already PSPACE-complete)
- possible in FPSPACE(poly) for under mild restrictions on the semiring and weighted formula

Complexity Results

The evaluation of LARS measures

- is PSPACE-hard for any non-trivial semiring (LARS is already PSPACE-complete)
- possible in FPSPACE(poly) for under mild restrictions on the semiring and weighted formula

Preferential Reasoning (over restricted LARS measures)

- Preference Checking is Π_2^p -complete
- Brave Preferential Reasoning is Σ_3^p -complete

Conclusion & Outlook

Conclusion & Outlook

LARS enables expressive stream reasoning

Conclusion & Outlook

- LARS enables expressive stream reasoning
- Weighted LARS and LARS measures as a general underlying framework for quantitative stream reasoning

 Lift quantitative LP-extensions to the streaming context

Conclusion & Outlook

- LARS enables expressive stream reasoning
- Weighted LARS and LARS measures as a general underlying framework for quantitative stream reasoning

 Lift quantitative LP-extensions to the streaming context
- Restrictions on LARS measures can tame the complexity

Conclusion & Outlook

- LARS enables expressive stream reasoning
- Weighted LARS and LARS measures as a general underlying framework for quantitative stream reasoning

 Lift quantitative LP-extensions to the streaming context
- Restrictions on LARS measures can tame the complexity

Next up

- Implementation
- Application in object detection, traffic regulation

Theory and Practice of Logic Programming, 9(1):57–144, 2009.

Gerhard Brewka, James Delgrande, Javier Romero, and Torsten Schaub.

asprin: Customizing answer set preferences without a headache.

In *Twenty-Ninth AAAI Conference on Artificial Intelligence*, 2015.

- Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing disjunctive datalog by constraints. IEEE Transactions on Knowledge and Data Engineering, 12(5):845–860, 2000.
- Luc De Raedt, Angelika Kimmig, and Hannu Toivonen.

Problog: A probabilistic prolog and its application in link discovery.

In IJCAI, volume 7, pages 2462–2467. Hyderabad, 2007.

- Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. An algebraic prolog for reasoning about possible worlds. In *Twenty-Fifth AAAI Conference on Artificial Intelligence*, 2011.
- Joohyung Lee and Zhun Yang.
 LpmIn, weak constraints, and p-log.
 In *Thirty-First AAAI Conference on Artificial Intelligence*, 2017.

Weighted LARS

- Evaluate formulas w.r.t. (S^*, S, t)
- > S^* starting stream, S current stream, t time

Formula	LARS	Weighted LARS
constant	\perp, \top	semiring value k
р	true, false	one, zero
$\neg \alpha$	true \leftrightarrow false	$ ext{zero} ightarrow ext{one, rest} ightarrow ext{zero}$
$\alpha \wedge \beta$	lpha and eta	lpha times eta
$\alpha \vee \beta$	lpha or eta	lpha plus eta
$\Box \alpha$	for all $t: \alpha$	product of α over t
$\Diamond \alpha$	exists $t: \alpha$	sum of α over t
$\mathbf{O}_{t'} \alpha$	(S^{\star}, S, t) changes to (S^{\star}, S, t')	
$\boxplus^{w} \alpha$	(S^{\star}, S, t) changes to $(S^{\star}, w(S, t), t)$	
$\triangleright \alpha$	(S^{\star}, S, t) changes to $(S^{\star}, S^{\star}, t)$	