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» How often does Peter visit Paris?

— Answer quantitative queries

» Which journey is optimal w.r.t. how often Paris is visited?
» LARS Programs, consisting of rules o + § with

ASP-semantics give us answer streams
» Answer streams correspond to possible journeys
— Express preferences over answer streams

» Other quantitative questions (Probabilities, Weighted
Model Counting, ...)
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Quantitative!

Quantitative extension(s) needed!
» Ad Hoc?

» Better: Framework! But, how? Need Computation
» Weighted Logic!

» Overload ({L, T},V,A, L, T)using semirings
(R, ®,®, e, %) and allow semiring values in formulas
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Examples are

» B=({L, T},V,A, L, T), the Boolean semiring.
< classical semantics

> S=(S,+,-,0,1), forS € {N,Z,Q, R}, the semiring over
the numbers in S.
— disjunction is sum, conjunction is multiplication

» Rmax = (QU {—00, 00}, max, +, —o0, 0), the max-tropical
semiring.
— disjunction is maximum, conjunction is sum
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LARS measure

» Goal: Assign answer streams a weight using «
» A LARS Measure 1 is defined by a triple (I, «, R), where

> [1is a LARS program
> «is a weighted LARS formula over R
> R is a semiring

» We set

[a]r(S,S,t) if Sisan answer stream of 1 at t,
ACA e otherwise
EB .

» Sis an answer stream of M at t if (S, S, ) satisfies 1 and
(S, S, t) is a minimal model of the reduct
NSt = {a«+ BN |(S,S,t) satisfies 3}
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Results

Expressivity Results |
We use LARS measures for

» Preferential Reasoning by

choosing the answer streams
with the highest value w.r.t. u

» Probabilistic Reasoning by

normalizing x to 7z and assigning
an answer streams (S, t) the probability (S, t)

» Weighted Model Counting by

computing the sum using &
of u(S, t) for each answer streams (S, t)
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Results

Expressivity Results |

LARS measures enable subsumption of corresponding
ASP-extensions

» Preferential Reasoning, i.e.,

Weak Constraints [Buccafurri et al., 2000]
(part.) asprin [Brewka et al., 2015]

» Probabilistic Reasoning, i.e.,

P-log [Baral et al., 2009]
LPMLN [Lee and Yang, 2017]
ProbLog [De Raedt et al., 2007]

» Weighted Model Counting, i.e.,
aProbLog [Kimmig et al., 2011]
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Results

Expressivity Results

» A plain fragment of LARS measures is expressively
equivalent to

» Weighted Automata (Finite State Machines with
weighted transition function)
» Rational Expressions (Regular Expressions with
weights)
» Shows the expressiveness of LARS measures
» Gives a rule-based alternative for specification via
automata
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Results

Complexity Results

The evaluation of LARS measures

» is PSPACE-hard for any non-trivial semiring (LARS is
already PSPACE-complete)

» possible in FPSPACE(poly) for under mild restrictions on
the semiring and weighted formula

Preferential Reasoning (over restricted LARS measures)

> Preference Checking is M5-complete
> Brave Preferential Reasoning is ¥5-complete
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Conclusion & Outlook

» LARS enables expressive stream reasoning

» Weighted LARS and LARS measures as a general
underlying framework for quantitative stream reasoning
— Lift quantitative LP-extensions to the streaming context

» Restrictions on LARS measures can tame the complexity

» Next up

> Implementation
> Application in object detection, traffic regulation
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Weighted LARS

» Evaluate formulas w.r.t. (S*, S, )
» S* starting stream, S current stream, t time

Formula LARS Weighted LARS
constant 1, T semiring value k
p true, false one, zero
e true < false | zero — one, rest — zero
aAB o and 8 atimes 8
aVp aorp a plus g
O« forall t: o product of « over t
Oa exists t: a sum of « over t
Oy« (S*, S, t) changes to (S*, S, t')
B« (S*, S, t) changes to (S*, w(S, 1), 1)
(e} (S*, S, t) changes to (S*, S*, 1)
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