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Examples are
I B = ({⊥,>},∨,∧,⊥,>), the Boolean semiring.
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the numbers in S.
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I Goal: Assign answer streams a weight using α

I A LARS Measure µ is defined by a triple 〈Π, α,R〉, where
I Π is a LARS program
I α is a weighted LARS formula over R
I R is a semiring

I We set

µ(S, t) =

{
JαKR(S,S, t) if S is an answer stream of Π at t ,

e⊕ otherwise.

I S is an answer stream of Π at t if (S,S, t) satisfies Π and
(S,S, t) is a minimal model of the reduct
ΠS,t = {α← β ∈ Π | (S,S, t) satisfies β}
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We use LARS measures for

� Preferential Reasoning, i.e.,

choosing optimal answer streams w.r.t. some criteria

� Probabilistic Reasoning, i.e.,

assigning answer streams a probability

� Weighted Model Counting, i.e.,

aggregating the weights of all answer streams
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Expressivity Results I
LARS measures enable subsumption of corresponding
ASP-extensions

� Preferential Reasoning, i.e.,

Weak Constraints [Buccafurri et al., 2000]
(part.) asprin [Brewka et al., 2015]

� Probabilistic Reasoning, i.e.,

P-log [Baral et al., 2009]
LPMLN [Lee and Yang, 2017]
ProbLog [De Raedt et al., 2007]

� Weighted Model Counting, i.e.,

aProbLog [Kimmig et al., 2011]
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Expressivity Results II

I A plain fragment of LARS measures is expressively
equivalent to

I Weighted Automata (Finite State Machines with
weighted transition function)

I Rational Expressions (Regular Expressions with
weights)

I Shows the expressiveness of LARS measures
I Gives a rule-based alternative for specification via

automata
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Complexity Results

The evaluation of LARS measures

I is PSPACE-hard for any non-trivial semiring (LARS is
already PSPACE-complete)

I possible in FPSPACE(poly) for under mild restrictions on
the semiring and weighted formula

Preferential Reasoning (over restricted LARS measures)

I Preference Checking is Πp
2-complete

I Brave Preferential Reasoning is Σp
3-complete
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↪→ Lift quantitative LP-extensions to the streaming context
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I Application in object detection, traffic regulation
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Weighted LARS

� Evaluate formulas w.r.t. (S?,S, t)
� S? starting stream, S current stream, t time

Formula LARS Weighted LARS
constant ⊥,> semiring value k

p true, false one, zero
¬α true↔ false zero→ one, rest→ zero
α ∧ β α and β α times β
α ∨ β α or β α plus β
2α for all t : α product of α over t
3α exists t : α sum of α over t
@t ′α (S?,S, t) changes to (S?,S, t ′)
�wα (S?,S, t) changes to (S?,w(S, t), t)
.α (S?,S, t) changes to (S?,S?, t)
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