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ASP(AC)
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Conclusion & Outlook

ASP Extensions
Classes of ASP Extensions

Manifold of ASP Extensions

� Nested Expressions α← β
� Weight Constraints L ≤ {a1 = w1, . . . ,¬an = wn} ≤ U
� . . .with Conditionals L ≤ {a1 : c1 = w1, . . . ,¬an : cn = wn} ≤ U
� Aggregates T ◦#F{X : p(X ), q(X ,Y )}
� Arithmetic Operators X = Y + Z
� Choice Constructs l{q(X ) : p(X )}u ←
� Weak Constraints :∼ F [Weight @ Level ]
� Probabilistic Rules w : r
� . . .
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� Nested Expressions
� Weight Constraints
� . . .with Conditionals
� Aggregates
� Arithmetic Operators
� Choice Constructs

Model Level
{

� Weak Constraints
� Probabilistic Rules
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Classes of ASP Extensions II

I Model Level: Assign answer sets a weight based on the atoms
in it.
↪→ Weighted LARS [Eiter and Kiesel, 2020]

I Atom Level: Include atoms in answer sets based on constraints
on quantities that depend on the interpretation.
↪→ This work
↪→ In ASP the quantities have a non-monotonic dependency!
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First-Order Here-and-There Logic

I Signature σ = 〈D,P,X ,S, r〉

I Syntax φ ::= ⊥ | p(~x) | φ→ φ | φ ∨ φ | φ ∧ φ | ∃xφ | ∀xφ
I pointed σ-HT-interpretation Iw = (IH , IT ,w), IH ⊆ IT

I reflexive order ≥ on {H,T}, with T ≥ H

I Semantics

Iw |=σ α ∧ β ⇐⇒ Iw |=σ α and Iw |=σ β

Iw |=σ φ→ ψ ⇐⇒ Iw ′ 6|=σ φ or Iw ′ |=σ ψ for all w ′ ≥ w

Iw |=σ ∃xφ(x) ⇐⇒ Iw |=σ φ(ξ), for some ξ ∈ r(s(x))

I I is an equilibrium model φ if (I, I,H) |= φ and
6 ∃I ′ ( I : (I ′, I,H) |= φ
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Semirings

A semiring is an algebraic structure (R,⊕,⊗, e⊕, e⊗), s.t.
I (R,⊕, e⊕) is a commutative monoid with neutral element e⊕
I (R,⊗, e⊗) is a monoid with neutral element e⊗
I multiplication (⊗) distributes over addition (⊕)
I multiplication by e⊕ annihilates R

Additionally � ∈ {⊕,⊗} is invertible if ∀r : ∃r i : r � r i = e�.

Semirings were successfully used to parameterize calculation in
[Bistarelli et al., 1997], [Green et al., 2007] and other works.
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Semiring Examples

Prominent examples are

� Q = (Q,+, ·, 0, 1) rational numbers

� Rmax = (R ∪ {−∞},max,+,−∞, 0) max-plus

� Rmin = (R ∪ {∞},min,+,∞, 0) min-plus

� B = ({⊥,>},∨,∧,⊥,>) boolean
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Weighted First-Order Here-and-There Logic I

I Coming from the unweighted version

φ ::= ⊥ | p(~x) | φ→ φ | φ ∨ φ | φ ∧ φ | ∃xφ | ∀xφ

I Idea: “Disjunction is addition and conjunction is multiplication”

I Syntax over a signature σ and semiring R

α ::= k | x | φ | α→ α | α+α | α∗α | −α | α−1 | Σxα | Πxα,
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Weighted First-Order Here-and-There Logic II

Semantics w.r.t. a pointed σ-HT-interpretation Iw

JkKσR(Iw ) = k , for k ∈ R

JφKσR(Iw ) =

{
e⊗, if Iw |=σ φ,
e⊕, otherwise.

, for σ-formulas φ

J−αKσR(Iw ) = −JαKσR(Iw )

Jα−1KσR(Iw ) = JαKσR(Iw )−1

Jα+ βKσR(Iw ) = JαKσR(Iw )⊕JβKσR(Iw )

Jα ∗ βKσR(Iw ) = JαKσR(Iw )⊗JβKσR(Iw )
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Weighted First-Order Here-and-There Logic II

Semantics w.r.t. a pointed σ-HT-interpretation Iw

Jα→ βKσR(Iw ) =

 e⊗,
if JαKσR(Iw ′) = e⊕ or JβKσR(Iw ′) 6= e⊕
for all w ′ ≥ w ,

e⊕, otherwise.

JΣxα(x)KσR(Iw ) =
⊕

ξ∈supp⊕(α(x),Iw )

Jα(ξ)KσR(Iw )1

JΠxα(x)KσR(Iw ) =
⊗

ξ∈supp⊗(α(x),Iw )

Jα(ξ)KσR(Iw )1

1When supp�(α(x), Iw ) is finite.
Thomas Eiter, Rafael Kiesel ASP(AC) 8 / 16
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Example

I Maximization over a unary predicate p:

MAX{X : p(X )} = JΣX p(X ) ∗ X KRmax

where Rmax = (R ∪ {−∞},max,+,−∞, 0).

I The range of the sort of X must be R ∪ {−∞}!
I We get

JΣX p(X ) ∗ X KRmax(Iw )

= max
σ∈supp−∞(p(X )∗X ,Iw )

Jp(σ)KRmax(Iw ) + σ

= max
σ∈R, s.t. p(σ)∈Iw

σ
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Algebraic Constraints

I Algebraic Constraints, k ∼R α or x ∼R α where
I R a semiring
I α a weighted formula
I k ∈ R and x is a variable
I ∼∈ {>,≥,=,≤, <, 6>, 6≥, 6=, 6≤, 6<}

I Satisfaction of k ∼R α w.r.t. Iw :

Iw |= k ∼R α ⇐⇒ k ∼ JαKR(Iw ′) for w ′ ≥ w

I Allow algebraic constraints in heads and bodies of AC-rules
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Example

I Weighted sums with a global or local weight using AC-rules:

l_sum(Y )← Y =Q ind(I ) ∗ l_weight(I ,W ) ∗W
g_sum(Y )← g_weight(W ),Y =Q ind(I ) ∗W

I local variables are Σ-quantified
global variable are ∀-quantified

I Semantics given by the FO-HT-sentences:

∀Y (Y =Q ΣIΣW ind(I ) ∗ l_weight(I ,W ) ∗W )→ l_sum(Y )

∀Y ∀W g_weight(W ) ∧ (Y =Q ΣI ind(I ) ∗W )→ g_sum(Y )
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� Minimized Guesses as a new construct
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Complexity

Minimized Guesses vs. Choice Constructs

I Choice Construct:

5{accept(X ) : possible(X )} ←

↪→ Any interpretation that accepts five or more elements can
be stable

I Minimized Guess:

5 ≤N ¬¬possible(X ) ∗ (possible(X )→ accept(X ))←

↪→ Only interpretations that accepts exactly five elements can
be stable
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Language Aspects

I Domain independence is undecidable...

I ... but expressive safe fragment is domain independent

Theorem (Strong Equivalence)
For any Π1,Π2 programs, Π1 ≡s Π2 iff Π1 has the same
HT-models, i.e. satisfying pointed HT-interpretations, as Π2.
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Complexity

Theorem (Ground Complexity)
For variable-free programs over efficiently encoded semirings

I MC and (propositional) SE are co-NP-complete.

I SAT is Σp
2-complete.

Theorem (Non-ground Complexity)
For safe programs over efficiently encoded semirings

I MC is in EXPTIME, both co-NPPP-hard and NPPP-hard and

I SAT and SE are undecidable.

I Over N, MC is co-NPNPPP
-complete
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I Subsume many previous extensions and add new constructs

↪→ constructs in a uniform language
↪→ others [Cabalar et al., 2020], [Son et al., 2007]

have abstract semantics but leave syntax open

I No increase in ground complexity

I Work towards an implementation
I finitely ground fragment
I restrictions on weighted formulas
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