ASP($\mathcal{A C}$): Answer Set Programming with Algebraic Constraints

Thomas Eiter, Rafael Kiesel

Vienna University of Technology
funded by FWF project W1255-N23

$22^{\text {nd }}$ of September 2020
FUF
Der Wissenschaftsfonds.

Manifold of ASP Extensions

- Nested Expressions
$\alpha \leftarrow \beta$
- Weight Constraints
$L \leq\left\{a_{1}=w_{1}, \ldots, \neg a_{n}=w_{n}\right\} \leq U$
- ... with Conditionals
- Aggregates
$L \leq\left\{a_{1}: c_{1}=w_{1}, \ldots, \neg a_{n}: c_{n}=w_{n}\right\} \leq U$
$T \circ \# F\{X: p(X), q(X, Y)\}$
- Arithmetic Operators
$X=Y+Z$
- Choice Constructs
$I\{q(X): p(X)\} u \leftarrow$
- Weak Constraints
$: \sim F$ [Weight © Level]
- Probabilistic Rules
$w: r$

Manifold of ASP Extensions

- Nested Expressions
- Weight Constraints
- ... with Conditionals
- Aggregates
- Arithmetic Operators
- Choice Constructs
- Weak Constraints
- Probabilistic Rules
[Ferraris, 2011]
[Niemela et al., 1999]
[Niemela et al., 1999]
[Faber et al., 2011]
[Lierler, 2014]
[Niemela et al., 1999]
[Buccafurri et al., 2000]
[Lee and Yang, 2017]

Classes of ASP Extensions I

\int Nested Expressions
- Weight Constraints
- ... with Conditionals
- Aggregates
- Arithmetic Operators
- Choice Constructs
Model Level \(\left\{\begin{array}{l}>Weak Constraints
>Probabilistic Rules\end{array}\right.\)

Classes of ASP Extensions II

- Model Level: Assign answer sets a weight based on the atoms in it.
\hookrightarrow Weighted LARS [Eiter and Kiesel, 2020]

Classes of ASP Extensions II

- Model Level: Assign answer sets a weight based on the atoms in it.
\hookrightarrow Weighted LARS [Eiter and Kiesel, 2020]
- Atom Level: Include atoms in answer sets based on constraints on quantities that depend on the interpretation.
\hookrightarrow This work

Classes of ASP Extensions II

- Model Level: Assign answer sets a weight based on the atoms in it.
\hookrightarrow Weighted LARS [Eiter and Kiesel, 2020]
- Atom Level: Include atoms in answer sets based on constraints on quantities that depend on the interpretation.
\hookrightarrow This work
\hookrightarrow In ASP the quantities have a non-monotonic dependency!

First-Order Here-and-There Logic

- Signature $\sigma=\langle\mathcal{D}, \mathcal{P}, \mathcal{X}, \mathcal{S}, r\rangle$

First-Order Here-and-There Logic

- Signature $\sigma=\langle\mathcal{D}, \mathcal{P}, \mathcal{X}, \mathcal{S}, r\rangle$
- Syntax $\phi::=\perp|p(\vec{x})| \phi \rightarrow \phi|\phi \vee \phi| \phi \wedge \phi|\exists x \phi| \forall x \phi$

First-Order Here-and-There Logic

- Signature $\sigma=\langle\mathcal{D}, \mathcal{P}, \mathcal{X}, \mathcal{S}, r\rangle$
- Syntax $\phi::=\perp|p(\vec{x})| \phi \rightarrow \phi|\phi \vee \phi| \phi \wedge \phi|\exists x \phi| \forall x \phi$
- pointed σ-HT-interpretation $\mathcal{I}_{w}=\left(\mathcal{I}^{H}, \mathcal{I}^{T}, w\right), \mathcal{I}^{H} \subseteq \mathcal{I}^{T}$
- reflexive order \geq on $\{H, T\}$, with $T \geq H$

First-Order Here-and-There Logic

- Signature $\sigma=\langle\mathcal{D}, \mathcal{P}, \mathcal{X}, \mathcal{S}, r\rangle$
- Syntax $\phi::=\perp|p(\vec{x})| \phi \rightarrow \phi|\phi \vee \phi| \phi \wedge \phi|\exists x \phi| \forall x \phi$
- pointed σ-HT-interpretation $\mathcal{I}_{w}=\left(\mathcal{I}^{H}, \mathcal{I}^{T}, w\right), \mathcal{I}^{H} \subseteq \mathcal{I}^{T}$
- reflexive order \geq on $\{H, T\}$, with $T \geq H$
- Semantics

$$
\begin{array}{ll}
\mathcal{I}_{w} \models_{\sigma} \alpha \wedge \beta & \Longleftrightarrow \mathcal{I}_{w} \models_{\sigma} \alpha \text { and } \mathcal{I}_{w} \models_{\sigma} \beta \\
\mathcal{I}_{w} \models_{\sigma} \phi \rightarrow \psi & \Longleftrightarrow \mathcal{I}_{w^{\prime}} \vDash_{\sigma} \phi \text { or } \mathcal{I}_{w^{\prime}} \models_{\sigma} \psi \text { for all } w^{\prime} \geq w \\
\mathcal{I}_{w} \models_{\sigma} \exists x \phi(x) & \Longleftrightarrow \mathcal{I}_{w} \models_{\sigma} \phi(\xi), \text { for some } \xi \in r(s(x))
\end{array}
$$

First-Order Here-and-There Logic

- Signature $\sigma=\langle\mathcal{D}, \mathcal{P}, \mathcal{X}, \mathcal{S}, r\rangle$
- Syntax $\phi::=\perp|p(\vec{x})| \phi \rightarrow \phi|\phi \vee \phi| \phi \wedge \phi|\exists x \phi| \forall x \phi$
- pointed σ-HT-interpretation $\mathcal{I}_{w}=\left(\mathcal{I}^{H}, \mathcal{I}^{T}, w\right), \mathcal{I}^{H} \subseteq \mathcal{I}^{T}$
- reflexive order \geq on $\{H, T\}$, with $T \geq H$
- Semantics

$$
\begin{array}{ll}
\mathcal{I}_{w} \models_{\sigma} \alpha \wedge \beta & \Longleftrightarrow \mathcal{I}_{w} \models_{\sigma} \alpha \text { and } \mathcal{I}_{w} \models_{\sigma} \beta \\
\mathcal{I}_{w} \models_{\sigma} \phi \rightarrow \psi & \Longleftrightarrow \mathcal{I}_{w^{\prime}} \vDash_{\sigma} \phi \text { or } \mathcal{I}_{w^{\prime}} \models_{\sigma} \psi \text { for all } w^{\prime} \geq w \\
\mathcal{I}_{w} \models_{\sigma} \exists x \phi(x) & \Longleftrightarrow \mathcal{I}_{w} \models_{\sigma} \phi(\xi), \text { for some } \xi \in r(s(x))
\end{array}
$$

- \mathcal{I} is an equilibrium model ϕ if $(\mathcal{I}, \mathcal{I}, H) \models \phi$ and $\nexists \mathcal{I}^{\prime} \subsetneq \mathcal{I}:\left(\mathcal{I}^{\prime}, \mathcal{I}, H\right) \models \phi$

Semirings

A semiring is an algebraic structure $\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$, s.t.

- $\left(R, \oplus, e_{\oplus}\right)$ is a commutative monoid with neutral element e_{\oplus}
- $\left(R, \otimes, e_{\otimes}\right)$ is a monoid with neutral element e_{\otimes}
- multiplication (\otimes) distributes over addition (\oplus)
- multiplication by e_{\oplus} annihilates R

Additionally $\odot \in\{\oplus, \otimes\}$ is invertible if $\forall r: \exists r^{i}: r \odot r^{i}=e_{\odot}$.

Semirings were successfully used to parameterize calculation in [Bistarelli et al., 1997], [Green et al., 2007] and other works.

Semiring Examples

Prominent examples are

- $\mathbb{Q}=(\mathbb{Q},+, \cdot, 0,1)$
rational numbers
$-\mathcal{R}_{\max }=(\mathbb{R} \cup\{-\infty\}, \max ,+,-\infty, 0)$ max-plus
- $\mathcal{R}_{\text {min }}=(\mathbb{R} \cup\{\infty\}, \min ,+, \infty, 0)$
min-plus
$\mathbb{B}=(\{\perp, \top\}, \vee, \wedge, \perp, \top) \quad$ boolean

Semiring Examples

Prominent examples are

- $\mathbb{Q}=(\mathbb{Q},+, \cdot, 0,1)$
rational numbers \hookrightarrow arithmetics
$-\mathcal{R}_{\max }=(\mathbb{R} \cup\{-\infty\}, \max ,+,-\infty, 0)$ max-plus
- $\mathcal{R}_{\text {min }}=(\mathbb{R} \cup\{\infty\}, \min ,+, \infty, 0)$
min-plus
$\mathbb{B}=(\{\perp, \top\}, \vee, \wedge, \perp, \top) \quad$ boolean

Semiring Examples

Prominent examples are

- $\mathbb{Q}=(\mathbb{Q},+, \cdot, 0,1)$
rational numbers
$-\mathcal{R}_{\max }=(\mathbb{R} \cup\{-\infty\}, \max ,+,-\infty, 0)$ max-plus \hookrightarrow optimisation
$-\mathcal{R}_{\text {min }}=(\mathbb{R} \cup\{\infty\}, \min ,+, \infty, 0) \quad$ min-plus
- $\mathbb{B}=(\{\perp, \top\}, \vee, \wedge, \perp, \top)$ boolean

Semiring Examples

Prominent examples are

- $\mathbb{Q}=(\mathbb{Q},+, \cdot, 0,1)$
rational numbers
$-\mathcal{R}_{\max }=(\mathbb{R} \cup\{-\infty\}, \max ,+,-\infty, 0)$ max-plus
$-\mathcal{R}_{\text {min }}=(\mathbb{R} \cup\{\infty\}, \min ,+, \infty, 0)$
min-plus
\hookrightarrow optimisation
$\mathbb{B}=(\{\perp, \top\}, \vee, \wedge, \perp, \top) \quad$ boolean

Semiring Examples

Prominent examples are

- $\mathbb{Q}=(\mathbb{Q},+, \cdot, 0,1) \quad$ rational numbers
$-\mathcal{R}_{\max }=(\mathbb{R} \cup\{-\infty\}, \max ,+,-\infty, 0)$ max-plus
$-\mathcal{R}_{\min }=(\mathbb{R} \cup\{\infty\}, \min ,+, \infty, 0) \quad$ min-plus

$$
\begin{array}{rlr}
\mathbb{B}= & (\{\perp, \top\}, \vee, \wedge, \perp, \top) \quad \text { boolean } \\
& \hookrightarrow \text { boolean constraints }
\end{array}
$$

Weighted First-Order Here-and-There Logic I

- Coming from the unweighted version

$$
\phi::=\perp|p(\vec{x})| \phi \rightarrow \phi|\phi \vee \phi| \phi \wedge \phi|\exists x \phi| \forall x \phi
$$

- Idea: "Disjunction is addition and conjunction is multiplication"

Weighted First-Order Here-and-There Logic I

- Coming from the unweighted version

$$
\phi::=\perp|p(\vec{x})| \phi \rightarrow \phi|\phi \vee \phi| \phi \wedge \phi|\exists x \phi| \forall x \phi
$$

- Idea: "Disjunction is addition and conjunction is multiplication"
- Syntax over a signature σ and semiring \mathcal{R}

$$
\alpha::=k|x| \phi|\alpha \rightarrow \alpha| \alpha+\alpha|\alpha * \alpha|-\alpha\left|\alpha^{-1}\right| \Sigma x \alpha \mid \Pi x \alpha,
$$

Weighted First-Order Here-and-There Logic II

Semantics w.r.t. a pointed σ-HT-interpretation \mathcal{I}_{w}

$$
\begin{aligned}
\llbracket k \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) & =k, \text { for } k \in R \\
\llbracket \phi \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) & =\left\{\begin{array}{ll}
e_{\otimes}, & \text { if } \mathcal{I}_{w} \models_{\sigma} \phi, \\
e_{\oplus}, & \text { otherwise. }
\end{array}, \text { for } \sigma \text {-formulas } \phi\right. \\
\llbracket-\alpha \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) & =-\llbracket \alpha \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) \\
\llbracket \alpha^{-1} \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) & =\llbracket \alpha \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right)^{-1} \\
\llbracket \alpha+\beta \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) & =\llbracket \alpha \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) \oplus \llbracket \beta \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) \\
\llbracket \alpha * \beta \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) & =\llbracket \alpha \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) \otimes \llbracket \beta \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right)
\end{aligned}
$$

Weighted First-Order Here-and-There Logic II

Semantics w.r.t. a pointed σ-HT-interpretation \mathcal{I}_{w}

$$
\begin{aligned}
\llbracket \alpha \rightarrow \beta \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) & = \begin{cases}e_{\otimes}, & \text { if } \llbracket \alpha \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w^{\prime}}\right)=e_{\oplus} \text { or } \llbracket \beta \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w^{\prime}}\right) \neq e_{\oplus} \\
e_{\oplus}, & \text { otherwise } w^{\prime} \geq w,\end{cases} \\
\llbracket \Sigma x \alpha(x) \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) & =\bigoplus_{\xi \in \operatorname{supp}_{\oplus}\left(\alpha(x), \mathcal{I}_{w}\right)} \llbracket \alpha(\xi) \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right)^{1} \\
\llbracket \Pi x \alpha(x) \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right) & =\bigotimes_{\xi \in \operatorname{supp}_{\otimes}\left(\alpha(x), \mathcal{I}_{w}\right)} \llbracket \alpha(\xi) \rrbracket_{\mathcal{R}}^{\sigma}\left(\mathcal{I}_{w}\right)^{1}
\end{aligned}
$$

[^0]
Example

- Maximization over a unary predicate p :

$$
\begin{gathered}
\operatorname{MAX}\{X: p(X)\}=\llbracket \Sigma X p(X) * X \rrbracket_{\mathcal{R}_{\max }} \\
\text { where } \mathcal{R}_{\max }=(\mathbb{R} \cup\{-\infty\}, \max ,+,-\infty, 0) .
\end{gathered}
$$

Example

- Maximization over a unary predicate p :

$$
\operatorname{MAX}\{X: p(X)\}=\llbracket \Sigma X p(X) * X \rrbracket_{\mathcal{R}_{\max }}
$$

where $\mathcal{R}_{\max }=(\mathbb{R} \cup\{-\infty\}, \max ,+,-\infty, 0)$.

- The range of the sort of X must be $\mathbb{R} \cup\{-\infty\}$!

Example

- Maximization over a unary predicate p :

$$
\operatorname{MAX}\{X: p(X)\}=\llbracket \Sigma X p(X) * X \rrbracket_{\mathcal{R}_{\max }}
$$

where $\mathcal{R}_{\max }=(\mathbb{R} \cup\{-\infty\}, \max ,+,-\infty, 0)$.

- The range of the sort of X must be $\mathbb{R} \cup\{-\infty\}$!
- We get

$$
\begin{aligned}
& \llbracket \Sigma X p(X) * X \rrbracket_{\mathcal{R}_{\max }}\left(\mathcal{I}_{w}\right) \\
= & \max _{\sigma \in \operatorname{supp}_{-\infty}\left(p(X) * X, \mathcal{I}_{w}\right)} \llbracket p(\sigma) \rrbracket_{\mathcal{R}_{\text {max }}}\left(\mathcal{I}_{w}\right)+\sigma \\
= & \max _{\sigma \in \mathbb{R}, \text { s.t. } p(\sigma) \in \mathcal{I}^{w}} \sigma
\end{aligned}
$$

Algebraic Constraints

- Algebraic Constraints, $k \sim_{\mathcal{R}} \alpha$ or $x \sim_{\mathcal{R}} \alpha$ where
- \mathcal{R} a semiring
- α a weighted formula
- $k \in R$ and x is a variable
- $\sim \in\{>, \geq,=, \leq,<, \ngtr, \geq, \neq, \not \subset, \nless\}$

Algebraic Constraints

- Algebraic Constraints, $k \sim_{\mathcal{R}} \alpha$ or $x \sim_{\mathcal{R}} \alpha$ where
- \mathcal{R} a semiring
- α a weighted formula
- $k \in R$ and x is a variable
$-\sim \in\{>, \geq,=, \leq,<, \ngtr, \geq, \neq, \not, \not, \nless\}$
- Satisfaction of $k \sim_{\mathcal{R}} \alpha$ w.r.t. \mathcal{I}_{w} :

$$
\mathcal{I}_{w} \models k \sim_{\mathcal{R}} \alpha \Longleftrightarrow k \sim \llbracket \alpha \rrbracket_{\mathcal{R}}\left(\mathcal{I}_{w^{\prime}}\right) \text { for } w^{\prime} \geq w
$$

Algebraic Constraints

- Algebraic Constraints, $k \sim_{\mathcal{R}} \alpha$ or $x \sim_{\mathcal{R}} \alpha$ where
- \mathcal{R} a semiring
- α a weighted formula
- $k \in R$ and x is a variable
$\rightarrow \sim \in\{>, \geq,=, \leq,<, \ngtr, \geq, \neq, \not, \not, \nless\}$
- Satisfaction of $k \sim_{\mathcal{R}} \alpha$ w.r.t. \mathcal{I}_{w} :

$$
\mathcal{I}_{w} \models k \sim_{\mathcal{R}} \alpha \Longleftrightarrow k \sim \llbracket \alpha \rrbracket_{\mathcal{R}}\left(\mathcal{I}_{w^{\prime}}\right) \text { for } w^{\prime} \geq w
$$

- Allow algebraic constraints in heads and bodies of $\mathcal{A C}$-rules

Example

- Weighted sums with a global or local weight using $\mathcal{A C}$-rules:

$$
\begin{aligned}
& l_{-} \operatorname{sum}(Y) \leftarrow Y=\mathbb{Q} \operatorname{ind}(I) * l_{-} \operatorname{weight}(I, W) * W \\
& \mathrm{~g} _\operatorname{sum}(Y) \leftarrow \mathrm{g} _\operatorname{weight}(W), Y=\mathbb{Q} \operatorname{ind}(I) * W
\end{aligned}
$$

Example

- Weighted sums with a global or local weight using $\mathcal{A C}$-rules:

$$
\begin{aligned}
& l_{-} \operatorname{sum}(Y) \leftarrow Y=\mathbb{Q} \operatorname{ind}(I) * l_{-} \operatorname{weight}(I, W) * W \\
& \mathrm{~g} _\operatorname{sum}(Y) \leftarrow \mathrm{g} _\operatorname{weight}(W), Y=\mathbb{Q} \operatorname{ind}(I) * W
\end{aligned}
$$

Example

- Weighted sums with a global or local weight using $\mathcal{A C}$-rules:

$$
\begin{aligned}
& l_{-} \operatorname{sum}(Y) \leftarrow Y=\mathbb{Q} \operatorname{ind}(I) * l_{-} \operatorname{weight}(I, W) * W \\
& \mathrm{~g} _\operatorname{sum}(Y) \leftarrow \mathrm{g} _ \text {weight }(W), Y=\mathbb{Q} \operatorname{ind}(I) * W
\end{aligned}
$$

- local variables are \sum-quantified global variable are \forall-quantified

Example

- Weighted sums with a global or local weight using $\mathcal{A C}$-rules:

$$
\begin{aligned}
& l_{-} \operatorname{sum}(Y) \leftarrow Y=\mathbb{Q} \operatorname{ind}(I) * l_{-} \operatorname{weight}(I, W) * W \\
& \mathrm{~g} _\operatorname{sum}(Y) \leftarrow \mathrm{g} _ \text {weight }(W), Y=\mathbb{Q} \operatorname{ind}(I) * W
\end{aligned}
$$

- local variables are \sum-quantified global variable are \forall-quantified
- Semantics given by the FO-HT-sentences:

$$
\begin{aligned}
& \forall Y\left(Y={ }_{\mathbb{Q}} \Sigma I \Sigma W \operatorname{ind}(I) * l_{-} \text {weight }(I, W) * W\right) \rightarrow l_{-} \operatorname{sum}(Y) \\
& \forall Y \forall W \text { g _ }^{\operatorname{weight}}(W) \wedge(Y=\mathbb{Q} \Sigma I \operatorname{ind}(I) * W) \rightarrow \mathrm{g}_{-} \operatorname{sum}(Y)
\end{aligned}
$$

Constructs Captured

- Nested Expressions
- Weight Constraints
- ... with Conditionals
- Aggregates
- Arithmetic Operators
- Choice Constructs

Constructs Captured

- Nested Expressions
- Weight Constraints
- ... with Conditionals
- Aggregates
- Arithmetic Operators
- Choice Constructs
can all be expressed!

Constructs Captured

- Nested Expressions
- Weight Constraints
- ... with Conditionals
- Aggregates
- Arithmetic Operators
- Choice Constructs
can all be expressed!
- Minimized Guesses as a new construct

Minimized Guesses vs. Choice Constructs

- Choice Construct:

$$
5\{\operatorname{accept}(X): \operatorname{possible}(X)\} \leftarrow
$$

\hookrightarrow Any interpretation that accepts five or more elements can be stable

Minimized Guesses vs. Choice Constructs

- Choice Construct:

$$
5\{\operatorname{accept}(X): \operatorname{possible}(X)\} \leftarrow
$$

\hookrightarrow Any interpretation that accepts five or more elements can be stable

- Minimized Guess:
$5 \leq_{\mathbb{N}} \neg \neg \operatorname{possible}(X) *(\operatorname{possible}(X) \rightarrow \operatorname{accept}(X)) \leftarrow$
\hookrightarrow Only interpretations that accepts exactly five elements can be stable

Language Aspects

- Domain independence is undecidable...

Language Aspects

- Domain independence is undecidable...
- ... but expressive safe fragment is domain independent

Language Aspects

- Domain independence is undecidable...
- ... but expressive safe fragment is domain independent

Theorem (Strong Equivalence)
For any Π_{1}, Π_{2} programs, $\Pi_{1} \equiv_{s} \Pi_{2}$ iff Π_{1} has the same $H T$-models, i.e. satisfying pointed $H T$-interpretations, as Π_{2}.

Complexity

Theorem (Ground Complexity)

For variable-free programs over efficiently encoded semirings

- MC and (propositional) SE are co-NP-complete.
- SAT is \sum_{2}^{p}-complete.

Theorem (Non-ground Complexity)
For safe programs over efficiently encoded semirings

- MC is in EXPTIME, both co-NPPP-hard and NPPP-hard and
- SAT and SE are undecidable.
- Over $\mathbb{N}, M C$ is co- $N P^{N P^{P P}}$-complete

Conclusion \& Outlook

- Subsume many previous extensions and add new constructs

Conclusion \& Outlook

- Subsume many previous extensions and add new constructs \hookrightarrow constructs in a uniform language

Conclusion \& Outlook

- Subsume many previous extensions and add new constructs \hookrightarrow constructs in a uniform language \hookrightarrow others [Cabalar et al., 2020], [Son et al., 2007] have abstract semantics but leave syntax open

Conclusion \& Outlook

- Subsume many previous extensions and add new constructs \hookrightarrow constructs in a uniform language \hookrightarrow others [Cabalar et al., 2020], [Son et al., 2007] have abstract semantics but leave syntax open
- No increase in ground complexity

Conclusion \& Outlook

- Subsume many previous extensions and add new constructs \hookrightarrow constructs in a uniform language \hookrightarrow others [Cabalar et al., 2020], [Son et al., 2007] have abstract semantics but leave syntax open
- No increase in ground complexity
- Work towards an implementation
- finitely ground fragment
- restrictions on weighted formulas

圁 Stefano Bistarelli, Ugo Montanari, and Francesca Rossi.
Semiring-based constraint logic programming.
In IJCAI (1), pages 352-357, 1997.
Erancesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing disjunctive datalog by constraints. IEEE Transactions on Knowledge and Data Engineering, 12(5):845-860, 2000.

E- Pedro Cabalar, Jorge Fandinno, Torsten Schaub, and Philipp Wanko.
A uniform treatment of aggregates and constraints in hybrid ASP.
arXiv preprint arXiv:2003.04176, 2020.
Thomas Eiter and Rafael Kiesel.
Weighted lars for quantitative stream reasoning.
In Proc. ECAI'20, 2020.

目 Wolfgang Faber，Gerald Pfeifer，and Nicola Leone．
Semantics and complexity of recursive aggregates in answer set programming．
Artificial Intelligence，175（1）：278－298， 2011.
Raclo Ferraris．
Logic programs with propositional connectives and aggregates． ACM Transactions on Computational Logic（TOCL），12（4）：25， 2011.

目 Todd J Green，Grigoris Karvounarakis，and Val Tannen．
Provenance semirings．
In Proceedings of the twenty－sixth ACM
SIGMOD－SIGACT－SIGART symposium on Principles of database systems，pages 31－40．ACM， 2007.

䍰 Joohyung Lee and Zhun Yang． Lpmln，weak constraints，and p－log．

In Thirty-First AAAI Conference on Artificial Intelligence, 2017.
囯 Yuliya Lierler.
Relating constraint answer set programming languages and algorithms.
Artificial Intelligence, 207:1-22, 2014.
R Ilkka Niemela, Patrik Simons, and Timo Soininen. Stable model semantics of weight constraint rules. In International Conference on Logic Programming and Nonmonotonic Reasoning, pages 317-331. Springer, 1999.
囯 Tran Cao Son, Enrico Pontelli, and Phan Huy Tu. Answer sets for logic programs with arbitrary abstract constraint atoms.
Journal of Artificial Intelligence Research, 29:353-389, 2007.

[^0]: ${ }^{1}$ When $\operatorname{supp}_{\odot}\left(\alpha(x), \mathcal{I}_{w}\right)$ is finite.

