
Efficient Answer Set Counting with aspmc

Thomas Eiter, Markus Hecher, Rafael Kiesel

Vienna University of Technology

funded by FWF project W1255-N23

20th of September 2021

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Algebraic Answer Set Counting

Interest in reasoning problems for Answer Set Programming (ASP)
that go beyond consistency and entailment:

I Probabilistic Reasoning [De Raedt et al., 2007], [Lee and
Yang, 2017], [Baral et al., 2009]

I Preferential Reasoning [Brewka et al., 2015]
I Algebraic Answer Set Counting (AASC) [Eiter and Kiesel,

2020], [Kimmig et al., 2011]

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 1 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Algebraic Answer Set Counting

Interest in reasoning problems for Answer Set Programming (ASP)
that go beyond consistency and entailment:
I Probabilistic Reasoning [De Raedt et al., 2007], [Lee and

Yang, 2017], [Baral et al., 2009]

I Preferential Reasoning [Brewka et al., 2015]
I Algebraic Answer Set Counting (AASC) [Eiter and Kiesel,

2020], [Kimmig et al., 2011]

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 1 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Algebraic Answer Set Counting

Interest in reasoning problems for Answer Set Programming (ASP)
that go beyond consistency and entailment:
I Probabilistic Reasoning [De Raedt et al., 2007], [Lee and

Yang, 2017], [Baral et al., 2009]
I Preferential Reasoning [Brewka et al., 2015]

I Algebraic Answer Set Counting (AASC) [Eiter and Kiesel,
2020], [Kimmig et al., 2011]

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 1 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Algebraic Answer Set Counting

Interest in reasoning problems for Answer Set Programming (ASP)
that go beyond consistency and entailment:
I Probabilistic Reasoning [De Raedt et al., 2007], [Lee and

Yang, 2017], [Baral et al., 2009]
I Preferential Reasoning [Brewka et al., 2015]
I Algebraic Answer Set Counting (AASC) [Eiter and Kiesel,

2020], [Kimmig et al., 2011]

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 1 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Solving AASC I

I Solving AASC instances can be #P-, NP- or OptP-hard

I Solvable via

1. answer set enumeration
↪→ only feasible for “few” answer sets

2. dynamic programming on a tree decomposition
↪→ only feasible for very low treewidth

3. compilation into a tractable circuit representation like d-DNNF
or SDD
↪→ compilers like c2d [Darwiche, 2004] work on CNFs

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 2 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Solving AASC I

I Solving AASC instances can be #P-, NP- or OptP-hard
I Solvable via

1. answer set enumeration
↪→ only feasible for “few” answer sets

2. dynamic programming on a tree decomposition
↪→ only feasible for very low treewidth

3. compilation into a tractable circuit representation like d-DNNF
or SDD
↪→ compilers like c2d [Darwiche, 2004] work on CNFs

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 2 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Solving AASC I

I Solving AASC instances can be #P-, NP- or OptP-hard
I Solvable via

1. answer set enumeration
↪→ only feasible for “few” answer sets

2. dynamic programming on a tree decomposition
↪→ only feasible for very low treewidth

3. compilation into a tractable circuit representation like d-DNNF
or SDD
↪→ compilers like c2d [Darwiche, 2004] work on CNFs

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 2 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Solving AASC I

I Solving AASC instances can be #P-, NP- or OptP-hard
I Solvable via

1. answer set enumeration
↪→ only feasible for “few” answer sets

2. dynamic programming on a tree decomposition
↪→ only feasible for very low treewidth

3. compilation into a tractable circuit representation like d-DNNF
or SDD
↪→ compilers like c2d [Darwiche, 2004] work on CNFs

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 2 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Solving AASC II

I We favor compilation
↪→ translate ASP to CNF via cycle-breaking

I Compilation has performance guarantees based on treewidth
↪→ find treewidth-aware cycle-breaking

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 3 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Solving AASC II

I We favor compilation
↪→ translate ASP to CNF via cycle-breaking

I Compilation has performance guarantees based on treewidth
↪→ find treewidth-aware cycle-breaking

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 3 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Example Program

Non-ground smokers program

0.3 :: stress(X)← person(X)

smokes(X)← stress(X)

0.2 :: inf(X ,Y)← friend(X ,Y)

smokes(Y)← smokes(X), inf(X ,Y)

And input data

person(1) person(2) person(3)

friend(1, 2) friend(2, 3) friend(3, 1)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 4 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Example Program

Non-ground smokers program

0.3 :: stress(X)← person(X)

smokes(X)← stress(X)

0.2 :: inf(X ,Y)← friend(X ,Y)

smokes(Y)← smokes(X), inf(X ,Y)

And input data

person(1) person(2) person(3)

friend(1, 2) friend(2, 3) friend(3, 1)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 4 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Example cont.

Putting the input data and the non-ground program together
results in

0.3 :: stress(x)← for x = 1, 2, 3
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 5 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

(Positive) Dependency Graph

The (positive) dependency graph of a program Π is the digraph
DEP(Π) = (V ,E), where
I V = A(Π) is the set of propositional variables that occur in Π

I (b, a) ∈ E if there is a rule a← b1, . . . , bn, not c1, . . . , not cm
in Π with b = bi

Theorem ([Fages, 1994])
If DEP(Π) is acyclic, then Clark(Π), the Clark-completion of Π, is
a propositional formula whose models are the answer sets of Π.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 6 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

(Positive) Dependency Graph

The (positive) dependency graph of a program Π is the digraph
DEP(Π) = (V ,E), where
I V = A(Π) is the set of propositional variables that occur in Π

I (b, a) ∈ E if there is a rule a← b1, . . . , bn, not c1, . . . , not cm
in Π with b = bi

Theorem ([Fages, 1994])
If DEP(Π) is acyclic, then Clark(Π), the Clark-completion of Π, is
a propositional formula whose models are the answer sets of Π.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 6 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Example cont.
The ground program. . .

0.3 :: stress(x)← for x = 1, 2, 3
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

. . . has dependency graph

smokes(1) smokes(2)

smokes(3)

stress(1)

stress(2)

stress(3)

inf(3, 1)

inf(1, 2)

inf(2, 3)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 7 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Example cont.
The ground program. . .

0.3 :: stress(x)← for x = 1, 2, 3
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

. . . has dependency graph

smokes(1) smokes(2)

smokes(3)

stress(1)

stress(2)

stress(3)

inf(3, 1)

inf(1, 2)

inf(2, 3)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 7 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Example cont.
The ground program. . .

0.3 :: stress(x)← for x = 1, 2, 3
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

. . . has dependency graph

smokes(1) smokes(2)

smokes(3)

stress(1)

stress(2)

stress(3)

inf(3, 1)

inf(1, 2)

inf(2, 3)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 7 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Example cont.
The ground program. . .

0.3 :: stress(x)← for x = 1, 2, 3
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

. . . has dependency graph

smokes(1) smokes(2)

smokes(3)

stress(1)

stress(2)

stress(3)

inf(3, 1)

inf(1, 2)

inf(2, 3)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 7 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Example cont.
The ground program. . .

0.3 :: stress(x)← for x = 1, 2, 3
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

. . . has dependency graph

smokes(1) smokes(2)

smokes(3)

stress(1)

stress(2)

stress(3)

inf(3, 1)

inf(1, 2)

inf(2, 3)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 7 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Example cont.
The ground program. . .

0.3 :: stress(x)← for x = 1, 2, 3
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

. . . has dependency graph

smokes(1) smokes(2)

smokes(3)

stress(1)

stress(2)

stress(3)

inf(3, 1)

inf(1, 2)

inf(2, 3)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 7 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Example cont.
The ground program. . .

0.3 :: stress(x)← for x = 1, 2, 3
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

. . . has dependency graph

smokes(1) smokes(2)

smokes(3)

stress(1)

stress(2)

stress(3)

inf(3, 1)

inf(1, 2)

inf(2, 3)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 7 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Idea

I We need all the possible acyclic derivations for each atom

I Problem: we can only get all the derivations if we have those
of the other atoms

I Idea: introduce copies of atoms that
I capture increasing subsets of the derivations

I only use derivations with probabilistic facts or already
introduced copies

I Do this iteratively until a (semantic) fixed point is reached

I Insight: the order in which atoms are considered is crucial!

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 8 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Idea

I We need all the possible acyclic derivations for each atom

I Problem: we can only get all the derivations if we have those
of the other atoms

I Idea: introduce copies of atoms that
I capture increasing subsets of the derivations

I only use derivations with probabilistic facts or already
introduced copies

I Do this iteratively until a (semantic) fixed point is reached

I Insight: the order in which atoms are considered is crucial!

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 8 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Idea

I We need all the possible acyclic derivations for each atom

I Problem: we can only get all the derivations if we have those
of the other atoms

I Idea: introduce copies of atoms that
I capture increasing subsets of the derivations

I only use derivations with probabilistic facts or already
introduced copies

I Do this iteratively until a (semantic) fixed point is reached

I Insight: the order in which atoms are considered is crucial!

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 8 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Idea

I We need all the possible acyclic derivations for each atom

I Problem: we can only get all the derivations if we have those
of the other atoms

I Idea: introduce copies of atoms that
I capture increasing subsets of the derivations

I only use derivations with probabilistic facts or already
introduced copies

I Do this iteratively until a (semantic) fixed point is reached

I Insight: the order in which atoms are considered is crucial!

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 8 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Idea

I We need all the possible acyclic derivations for each atom

I Problem: we can only get all the derivations if we have those
of the other atoms

I Idea: introduce copies of atoms that
I capture increasing subsets of the derivations

I only use derivations with probabilistic facts or already
introduced copies

I Do this iteratively until a (semantic) fixed point is reached

I Insight: the order in which atoms are considered is crucial!

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 8 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Idea

I We need all the possible acyclic derivations for each atom

I Problem: we can only get all the derivations if we have those
of the other atoms

I Idea: introduce copies of atoms that
I capture increasing subsets of the derivations

I only use derivations with probabilistic facts or already
introduced copies

I Do this iteratively until a (semantic) fixed point is reached

I Insight: the order in which atoms are considered is crucial!

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 8 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Example cont.

0.3 :: stress(x)← for x = 1, 2, 3 (1)
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3 (2)
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

Can be unfolded to (1), (2) and

smokes(1)1 ← stress(1) smokes(1)1 ← inf(3, 1),⊥
smokes(2)1 ← stress(2) smokes(2)1 ← inf(1, 2), smokes(1)1

smokes(3)1 ← stress(3) smokes(3)1 ← inf(2, 3), smokes(2)1

smokes(1)2 ← stress(1) smokes(1)2 ← inf(3, 1), smokes(3)1

smokes(2)2 ← stress(2) smokes(2)2 ← inf(1, 2), smokes(1)2

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 9 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Example cont.

0.3 :: stress(x)← for x = 1, 2, 3 (1)
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3 (2)
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

Can be unfolded to (1), (2) and

smokes(1)1 ← stress(1) smokes(1)1 ← inf(3, 1),⊥
no copy of smokes(3) ↪→ use falsum

smokes(2)1 ← stress(2) smokes(2)1 ← inf(1, 2), smokes(1)1

smokes(3)1 ← stress(3) smokes(3)1 ← inf(2, 3), smokes(2)1

smokes(1)2 ← stress(1) smokes(1)2 ← inf(3, 1), smokes(3)1

smokes(2)2 ← stress(2) smokes(2)2 ← inf(1, 2), smokes(1)2

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 9 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Example cont.

0.3 :: stress(x)← for x = 1, 2, 3 (1)
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3 (2)
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

Can be unfolded to (1), (2) and

smokes(1)1 ← stress(1) smokes(1)1 ← inf(3, 1),⊥
smokes(2)1 ← stress(2) smokes(2)1 ← inf(1, 2), smokes(1)1

smokes(3)1 ← stress(3) smokes(3)1 ← inf(2, 3), smokes(2)1

smokes(1)2 ← stress(1) smokes(1)2 ← inf(3, 1), smokes(3)1

smokes(2)2 ← stress(2) smokes(2)2 ← inf(1, 2), smokes(1)2

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 9 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Example cont.

0.3 :: stress(x)← for x = 1, 2, 3 (1)
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3 (2)
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

Can be unfolded to (1), (2) and

smokes(1)1 ← stress(1) smokes(1)1 ← inf(3, 1),⊥
smokes(2)1 ← stress(2) smokes(2)1 ← inf(1, 2), smokes(1)1

smokes(3)1 ← stress(3) smokes(3)1 ← inf(2, 3), smokes(2)1

smokes(1)2 ← stress(1) smokes(1)2 ← inf(3, 1), smokes(3)1

smokes(2)2 ← stress(2) smokes(2)2 ← inf(1, 2), smokes(1)2

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 9 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Example cont.

0.3 :: stress(x)← for x = 1, 2, 3 (1)
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3 (2)
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

Can be unfolded to (1), (2) and

smokes(1)1 ← stress(1) smokes(1)1 ← inf(3, 1),⊥
smokes(2)1 ← stress(2) smokes(2)1 ← inf(1, 2), smokes(1)1

smokes(3)1 ← stress(3) smokes(3)1 ← inf(2, 3), smokes(2)1

smokes(1)2 ← stress(1) smokes(1)2 ← inf(3, 1), smokes(3)1

smokes(2)2 ← stress(2) smokes(2)2 ← inf(1, 2), smokes(1)2

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 9 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Example cont.

0.3 :: stress(x)← for x = 1, 2, 3 (1)
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3 (2)
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

Can be unfolded to (1), (2) and

smokes(1)1 ← stress(1) smokes(1)1 ← inf(3, 1),⊥
smokes(2)1 ← stress(2) smokes(2)1 ← inf(1, 2), smokes(1)1

smokes(3)1 ← stress(3) smokes(3)1 ← inf(2, 3), smokes(2)1

smokes(1)2 ← stress(1) smokes(1)2 ← inf(3, 1), smokes(3)1

smokes(2)2 ← stress(2) smokes(2)2 ← inf(1, 2), smokes(1)2

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 9 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Example cont.

0.3 :: stress(x)← for x = 1, 2, 3 (1)
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3 (2)
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

Can be unfolded to (1), (2) and

smokes(1)1 ← stress(1) smokes(1)1 ← inf(3, 1),⊥
smokes(2)1 ← stress(2) smokes(2)1 ← inf(1, 2), smokes(1)1

smokes(3) ← stress(3) smokes(3) ← inf(2, 3), smokes(2)1

smokes(1) ← stress(1) smokes(1) ← inf(3, 1), smokes(3)

smokes(2) ← stress(2) smokes(2) ← inf(1, 2), smokes(1)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 9 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Algorithm 1 TP -Unfold(Π, s)

Input A program Π and an unfolding sequence s ∈ A(Π)∗.
Output An acyclic program Π′.
1: last = {a 7→ ⊥ | a ∈ A(Π)}
2: cnt = {a 7→ 0 | a ∈ A(Π)}
3: for i = 1, . . . , len(s) do
4: if isLastOccurrence(si , i , s) then
5: head = si
6: else
7: head = s

cnt(si)+1
i

8: for si ← b1, . . . , bn, not c1, . . . , not cm ∈ Π do
9: Add head← last(b1), . . . , last(bn), not c1, . . . , not cm

10: last(si) = head
11: cnt(si) = cnt(si) + 1

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 10 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Algorithm 2 TP -Unfold(Π, s)

Input A program Π and an unfolding sequence s ∈ A(Π)∗.
Output An acyclic program Π′.
1: last = {a 7→ ⊥ | a ∈ A(Π)}
2: cnt = {a 7→ 0 | a ∈ A(Π)}
3: for i = 1, . . . , len(s) do
4: if isLastOccurrence(si , i , s) then
5: head = si
6: else
7: head = s

cnt(si)+1
i

8: for si ← b1, . . . , bn, not c1, . . . , not cm ∈ Π do
9: Add head← last(b1), . . . , last(bn), not c1, . . . , not cm

10: last(si) = head
11: cnt(si) = cnt(si) + 1

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 10 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Properties

I Acyclicity ?

I Faithfulness, i.e., bijective preserving of answer sets ?

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 11 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Properties

I Acyclicity X

I Faithfulness, i.e., bijective preserving of answer sets ?

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 11 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Properties

I Acyclicity X

I Faithfulness, i.e., bijective preserving of answer sets ?

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 11 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

TP -Unfolding

Properties

I Acyclicity X

I Faithfulness, i.e., bijective preserving of answer sets

Theorem
X, if for every simple directed path π = (a1, . . . , an) in DEP(Π)
there is a directed path πc = (ac11 , . . . , a

cn
n) in

DEP(TP -Unfold(Π, s)).

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 11 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Good Unfolding Sequences
Component-Boosted Backdoor Size

Good Unfolding Sequences?

I We need path preserving unfolding sequences

I What else makes an unfolding sequence good?

Lemma
Let Π be an answer set program with treewidth k and s ∈ A(Π)∗ be
an unfolding sequence. If every variable occurs at most m times in
s, then the treewidth of TP -Unfold(Π, s) is less or equal to k ·m.

I We are interested in path preserving m-unfolding sequences
with small m

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 12 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Good Unfolding Sequences
Component-Boosted Backdoor Size

Good Unfolding Sequences?

I We need path preserving unfolding sequences
I What else makes an unfolding sequence good?

Lemma
Let Π be an answer set program with treewidth k and s ∈ A(Π)∗ be
an unfolding sequence. If every variable occurs at most m times in
s, then the treewidth of TP -Unfold(Π, s) is less or equal to k ·m.

I We are interested in path preserving m-unfolding sequences
with small m

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 12 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Good Unfolding Sequences
Component-Boosted Backdoor Size

Good Unfolding Sequences?

I We need path preserving unfolding sequences
I What else makes an unfolding sequence good?

Lemma
Let Π be an answer set program with treewidth k and s ∈ A(Π)∗ be
an unfolding sequence. If every variable occurs at most m times in
s, then the treewidth of TP -Unfold(Π, s) is less or equal to k ·m.

I We are interested in path preserving m-unfolding sequences
with small m

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 12 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Good Unfolding Sequences
Component-Boosted Backdoor Size

Good Unfolding Sequences?

I We need path preserving unfolding sequences
I What else makes an unfolding sequence good?

Lemma
Let Π be an answer set program with treewidth k and s ∈ A(Π)∗ be
an unfolding sequence. If every variable occurs at most m times in
s, then the treewidth of TP -Unfold(Π, s) is less or equal to k ·m.

I We are interested in path preserving m-unfolding sequences
with small m

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 12 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Good Unfolding Sequences
Component-Boosted Backdoor Size

Component-Boosted Backdoor Size

Definition (cbs(G))
Let G be a digraph. Then cbs(G), the component-boosted
backdoor size of G , is
I 1, if G is acyclic (which includes V (G) = ∅)

I 2, if G is a polytree, i.e. the undirected version of G is
connected and acyclic

I max{cbs(C) | C ∈ SCC(G)}, if G is cyclic but not strongly
connected

I min{cbs(G \ S) · (|S |+ 1) | S ⊆ V (G)} otherwise

Intuitively, cbs(G) measures the cyclicity of G by decomposition
into “easy to solve” subgraphs

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 13 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Good Unfolding Sequences
Component-Boosted Backdoor Size

Component-Boosted Backdoor Size

Definition (cbs(G))
Let G be a digraph. Then cbs(G), the component-boosted
backdoor size of G , is
I 1, if G is acyclic (which includes V (G) = ∅)
I 2, if G is a polytree, i.e. the undirected version of G is

connected and acyclic

I max{cbs(C) | C ∈ SCC(G)}, if G is cyclic but not strongly
connected

I min{cbs(G \ S) · (|S |+ 1) | S ⊆ V (G)} otherwise

Intuitively, cbs(G) measures the cyclicity of G by decomposition
into “easy to solve” subgraphs

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 13 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Good Unfolding Sequences
Component-Boosted Backdoor Size

Component-Boosted Backdoor Size

Definition (cbs(G))
Let G be a digraph. Then cbs(G), the component-boosted
backdoor size of G , is
I 1, if G is acyclic (which includes V (G) = ∅)
I 2, if G is a polytree, i.e. the undirected version of G is

connected and acyclic
I max{cbs(C) | C ∈ SCC(G)}, if G is cyclic but not strongly

connected

I min{cbs(G \ S) · (|S |+ 1) | S ⊆ V (G)} otherwise

Intuitively, cbs(G) measures the cyclicity of G by decomposition
into “easy to solve” subgraphs

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 13 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Good Unfolding Sequences
Component-Boosted Backdoor Size

Component-Boosted Backdoor Size

Definition (cbs(G))
Let G be a digraph. Then cbs(G), the component-boosted
backdoor size of G , is
I 1, if G is acyclic (which includes V (G) = ∅)
I 2, if G is a polytree, i.e. the undirected version of G is

connected and acyclic
I max{cbs(C) | C ∈ SCC(G)}, if G is cyclic but not strongly

connected
I min{cbs(G \ S) · (|S |+ 1) | S ⊆ V (G)} otherwise

Intuitively, cbs(G) measures the cyclicity of G by decomposition
into “easy to solve” subgraphs

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 13 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Good Unfolding Sequences
Component-Boosted Backdoor Size

Component-Boosted Backdoor Size

Definition (cbs(G))
Let G be a digraph. Then cbs(G), the component-boosted
backdoor size of G , is
I 1, if G is acyclic (which includes V (G) = ∅)
I 2, if G is a polytree, i.e. the undirected version of G is

connected and acyclic
I max{cbs(C) | C ∈ SCC(G)}, if G is cyclic but not strongly

connected
I min{cbs(G \ S) · (|S |+ 1) | S ⊆ V (G)} otherwise

Intuitively, cbs(G) measures the cyclicity of G by decomposition
into “easy to solve” subgraphs

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 13 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Good Unfolding Sequences
Component-Boosted Backdoor Size

Component-Boosted Backdoor Size cont.

How does this help us?

Theorem
For every digraph G there exists a path preserving cbs(G)-unfolding
sequence.
For the original point of interest this means that:

Theorem
For every answer set program Π, there exists an unfolding sequence
s ∈ A(Π)∗ such that
1. the answer sets are preserved bijectively
2. the treewidth of TP -Unfold(Π, s) is less or equal to

k · cbs(DEP(Π)), where k is the treewidth of Π.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 14 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Good Unfolding Sequences
Component-Boosted Backdoor Size

Component-Boosted Backdoor Size cont.

How does this help us?

Theorem
For every digraph G there exists a path preserving cbs(G)-unfolding
sequence.

For the original point of interest this means that:

Theorem
For every answer set program Π, there exists an unfolding sequence
s ∈ A(Π)∗ such that
1. the answer sets are preserved bijectively
2. the treewidth of TP -Unfold(Π, s) is less or equal to

k · cbs(DEP(Π)), where k is the treewidth of Π.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 14 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Good Unfolding Sequences
Component-Boosted Backdoor Size

Component-Boosted Backdoor Size cont.

How does this help us?

Theorem
For every digraph G there exists a path preserving cbs(G)-unfolding
sequence.
For the original point of interest this means that:

Theorem
For every answer set program Π, there exists an unfolding sequence
s ∈ A(Π)∗ such that
1. the answer sets are preserved bijectively
2. the treewidth of TP -Unfold(Π, s) is less or equal to

k · cbs(DEP(Π)), where k is the treewidth of Π.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 14 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Benchmark Settings
Results

Scenarios

S1 Probabilistic reasoning: Computing probabilities for atoms of
Problog programs

S2 Counting (small number of solutions on average): Counting
the number of different paths between stations in public
transport networks

S3 Counting (many solutions on average): Counting conflict-free
extensions in abstract argumentation

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 15 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Benchmark Settings
Results

Solvers

I Problog, version 2.1.0.42, run with arguments “-k sdd”

I clingo, version 5.4.0, run with arguments “-q -n 0”

I lp2sat+c2d: cycle breaking due to [Bomanson, 2017] followed
by compilation using c2d [Darwiche, 2004]

I aspmc+c2d: our cycle breaking followed by compilation using
c2d [Darwiche, 2004]

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 16 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Benchmark Settings
Results

Results S1

0 100 200 30050 150 250
number of instances

0

200

400

600

800

1000

1200

1400

1600

1800

w
al

l c
lo

ck
 ti

m
e

[s
]

aspmc+c2d
problog
lp2sat+c2d*
clingo*

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 17 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Benchmark Settings
Results

Results S2

800 1200100 1300 1400200 1100300 1500400 1000500 600 900700
number of instances

0

200

400

600

800

1000

1200

1400

1600

1800

w
al

l c
lo

ck
 ti

m
e

[s
]

aspmc+c2d & clingo
clingo
aspmc+c2d
lp2sat+c2d

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 18 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Benchmark Settings
Results

Results S3

solver tw ranges
configuration

∑
0-300 300-600 >600 unique time[h]

aspmc+c2d 241 185 26 30 12 45.16
lp2sat+c2d 182 182 0 0 0 73.85
clingo 144 97 21 26 2 94.78

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 19 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Conclusions

I cbs(.) measures cyclicity of digraphs

I TP -unfolding allows treewidth-aware cycle-breaking

I Our prototypical implementation partially outperforms other
solvers

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 20 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Conclusions

I cbs(.) measures cyclicity of digraphs

I TP -unfolding allows treewidth-aware cycle-breaking

I Our prototypical implementation partially outperforms other
solvers

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 20 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Conclusions

I cbs(.) measures cyclicity of digraphs

I TP -unfolding allows treewidth-aware cycle-breaking

I Our prototypical implementation partially outperforms other
solvers

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 20 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Chitta Baral, Michael Gelfond, and Nelson Rushton.
Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming, 9(1):57–144, 2009.

Jori Bomanson.
lp2normal - A normalization tool for extended logic programs.
In LPNMR, volume 10377 of Lecture Notes in Computer
Science, pages 222–228. Springer, 2017.

Gerhard Brewka, James Delgrande, Javier Romero, and Torsten
Schaub.
asprin: Customizing answer set preferences without a
headache.
In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

Adnan Darwiche.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 20 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

New advances in compiling CNF into decomposable negation
normal form.
In ECAI, pages 328–332. IOS Press, 2004.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen.
Problog: A probabilistic prolog and its application in link
discovery.
In IJCAI, volume 7, pages 2462–2467. Hyderabad, 2007.

Thomas Eiter and Rafael Kiesel.
Weighted lars for quantitative stream reasoning.
In Proc. ECAI’20, 2020.

François Fages.
Consistency of clark’s completion and existence of stable
models.
Journal of Methods of logic in computer science, 1(1):51–60,
1994.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 20 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt.
An algebraic prolog for reasoning about possible worlds.
In Twenty-Fifth AAAI Conference on Artificial Intelligence,
2011.

Joohyung Lee and Zhun Yang.
Lpmln, weak constraints, and p-log.
In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 21 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 1: DAG

I We can take any unfolding sequence s that is in topological
order

I Such an s can be constructed by iteratively removing a vertex
a without ancestors from G and appending it to s

v1 v2

v3

v4 v5 v6

v
(1)
1

v
(1)
2

v
(1)
3

v
(1)
4 v

(1)
5 v

(1)
6

Use unfolding sequence s = v1

v2v3v4v5v6

.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 21 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 1: DAG

I We can take any unfolding sequence s that is in topological
order

I Such an s can be constructed by iteratively removing a vertex
a without ancestors from G and appending it to s

v1 v2

v3

v4 v5 v6

v
(1)
1

v
(1)
2

v
(1)
3

v
(1)
4 v

(1)
5 v

(1)
6

Use unfolding sequence s = v1

v2v3v4v5v6

.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 21 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 1: DAG

I We can take any unfolding sequence s that is in topological
order

I Such an s can be constructed by iteratively removing a vertex
a without ancestors from G and appending it to s

v1 v2

v3

v4 v5 v6

v
(1)
1

v
(1)
2

v
(1)
3

v
(1)
4 v

(1)
5 v

(1)
6

Use unfolding sequence s = v1

v2v3v4v5v6

.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 21 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 1: DAG

I We can take any unfolding sequence s that is in topological
order

I Such an s can be constructed by iteratively removing a vertex
a without ancestors from G and appending it to s

v1 v2

v3

v4 v5 v6

v
(1)
1 v

(1)
2

v
(1)
3

v
(1)
4 v

(1)
5 v

(1)
6

Use unfolding sequence s = v1v2

v3v4v5v6

.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 21 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 1: DAG

I We can take any unfolding sequence s that is in topological
order

I Such an s can be constructed by iteratively removing a vertex
a without ancestors from G and appending it to s

v1 v2

v3

v4 v5 v6

v
(1)
1 v

(1)
2

v
(1)
3

v
(1)
4 v

(1)
5 v

(1)
6

Use unfolding sequence s = v1v2v3

v4v5v6

.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 21 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 1: DAG

I We can take any unfolding sequence s that is in topological
order

I Such an s can be constructed by iteratively removing a vertex
a without ancestors from G and appending it to s

v1 v2

v3

v4 v5 v6

v
(1)
1 v

(1)
2

v
(1)
3

v
(1)
4

v
(1)
5 v

(1)
6

Use unfolding sequence s = v1v2v3v4

v5v6

.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 21 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 1: DAG

I We can take any unfolding sequence s that is in topological
order

I Such an s can be constructed by iteratively removing a vertex
a without ancestors from G and appending it to s

v1 v2

v3

v4 v5 v6

v
(1)
1 v

(1)
2

v
(1)
3

v
(1)
4 v

(1)
5

v
(1)
6

Use unfolding sequence s = v1v2v3v4v5

v6

.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 21 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 1: DAG

I We can take any unfolding sequence s that is in topological
order

I Such an s can be constructed by iteratively removing a vertex
a without ancestors from G and appending it to s

v1 v2

v3

v4 v5 v6

v
(1)
1 v

(1)
2

v
(1)
3

v
(1)
4 v

(1)
5 v

(1)
6

Use unfolding sequence s = v1v2v3v4v5v6.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 21 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 2: Polytree

v1

v2 v3

v4 v5

v
(1)
2 v

(1)
3

v
(1)
4 v

(1)
5

v
(2)
1

v
(2)
2 v

(2)
3

v
(2)
4 v

(2)
5

Use unfolding sequence s = spostspre , where
spost = v4v5v2v3v1, spre = v3v2v5v4.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 22 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 2: Polytree

v1

v2 v3

v4 v5

v
(1)
2 v

(1)
3

v
(1)
4 v

(1)
5

v
(2)
1

v
(2)
2 v

(2)
3

v
(2)
4 v

(2)
5

Use unfolding sequence s = spostspre , where
spost = v4v5v2v3v1, spre = v3v2v5v4.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 22 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 3: Cyclic but not Strongly Connected

I We can handle each strongly connected component
Ci , i = 1, . . . , k of G separately and combine them

I Take s = si1 . . . sik (in topological order of the SCCs), where sij
is a path-preserving cbs(Cij)-unfolding sequence for Cij

C1 C2

C3

C4 C5 C6

UF(C1, s1) UF(C2, s2)

UF(C3, s3)

UF(C4, s4) UF(C5, s5) UF(C6, s6)

Use unfolding sequence s = s1s2s3s4s5s6.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 23 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 3: Cyclic but not Strongly Connected

I We can handle each strongly connected component
Ci , i = 1, . . . , k of G separately and combine them

I Take s = si1 . . . sik (in topological order of the SCCs), where sij
is a path-preserving cbs(Cij)-unfolding sequence for Cij

C1 C2

C3

C4 C5 C6

UF(C1, s1) UF(C2, s2)

UF(C3, s3)

UF(C4, s4) UF(C5, s5) UF(C6, s6)

Use unfolding sequence s = s1s2s3s4s5s6.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 23 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 3: Cyclic but not Strongly Connected

I We can handle each strongly connected component
Ci , i = 1, . . . , k of G separately and combine them

I Take s = si1 . . . sik (in topological order of the SCCs), where sij
is a path-preserving cbs(Cij)-unfolding sequence for Cij

C1 C2

C3

C4 C5 C6

UF(C1, s1) UF(C2, s2)

UF(C3, s3)

UF(C4, s4) UF(C5, s5) UF(C6, s6)

Use unfolding sequence s = s1s2s3s4s5s6.

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 23 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 4: Strongly Connected but not Polytree

I G is strongly connected but not a polytree

I Cut out S = {a1, . . . , an} ⊆ V (G)

I Obtain a path-preserving cbs(G \ S)-unfolding sequence sr for
G \ S

I Use s = (sr sS)|S |sr , were sS = a1 . . . an
I s is a path-preserving cbs(G \ S) · (|S |+ 1)-unfolding sequence

for G

UF(G \ S , sr)

S

. . .

. . .

UF(G \ S , sr)

S

UF(G \ S , sr)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 24 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 4: Strongly Connected but not Polytree

I G is strongly connected but not a polytree
I Cut out S = {a1, . . . , an} ⊆ V (G)

I Obtain a path-preserving cbs(G \ S)-unfolding sequence sr for
G \ S

I Use s = (sr sS)|S |sr , were sS = a1 . . . an
I s is a path-preserving cbs(G \ S) · (|S |+ 1)-unfolding sequence

for G

UF(G \ S , sr)

S

. . .

. . .

UF(G \ S , sr)

S

UF(G \ S , sr)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 24 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 4: Strongly Connected but not Polytree

I G is strongly connected but not a polytree
I Cut out S = {a1, . . . , an} ⊆ V (G)

I Obtain a path-preserving cbs(G \ S)-unfolding sequence sr for
G \ S

I Use s = (sr sS)|S |sr , were sS = a1 . . . an
I s is a path-preserving cbs(G \ S) · (|S |+ 1)-unfolding sequence

for G

UF(G \ S , sr)

S

. . .

. . .

UF(G \ S , sr)

S

UF(G \ S , sr)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 24 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 4: Strongly Connected but not Polytree

I G is strongly connected but not a polytree
I Cut out S = {a1, . . . , an} ⊆ V (G)

I Obtain a path-preserving cbs(G \ S)-unfolding sequence sr for
G \ S

I Use s = (sr sS)|S |sr , were sS = a1 . . . an

I s is a path-preserving cbs(G \ S) · (|S |+ 1)-unfolding sequence
for G

UF(G \ S , sr)

S

. . .

. . .

UF(G \ S , sr)

S

UF(G \ S , sr)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 24 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 4: Strongly Connected but not Polytree

I G is strongly connected but not a polytree
I Cut out S = {a1, . . . , an} ⊆ V (G)

I Obtain a path-preserving cbs(G \ S)-unfolding sequence sr for
G \ S

I Use s = (sr sS)|S |sr , were sS = a1 . . . an
I s is a path-preserving cbs(G \ S) · (|S |+ 1)-unfolding sequence

for G

UF(G \ S , sr)

S

. . .

. . .

UF(G \ S , sr)

S

UF(G \ S , sr)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 24 / 20

Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Case 4: Strongly Connected but not Polytree

I G is strongly connected but not a polytree
I Cut out S = {a1, . . . , an} ⊆ V (G)

I Obtain a path-preserving cbs(G \ S)-unfolding sequence sr for
G \ S

I Use s = (sr sS)|S |sr , were sS = a1 . . . an
I s is a path-preserving cbs(G \ S) · (|S |+ 1)-unfolding sequence

for G

UF(G \ S , sr)

S

. . .

. . .

UF(G \ S , sr)

S

UF(G \ S , sr)

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 24 / 20

