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Algebraic Answer Set Counting

Interest in reasoning problems for Answer Set Programming (ASP)
that go beyond consistency and entailment:

I Probabilistic Reasoning [De Raedt et al., 2007], [Lee and
Yang, 2017], [Baral et al., 2009]

I Preferential Reasoning [Brewka et al., 2015]
I Algebraic Answer Set Counting (AASC) [Eiter and Kiesel,

2020], [Kimmig et al., 2011]

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 1 / 20



Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Algebraic Answer Set Counting

Interest in reasoning problems for Answer Set Programming (ASP)
that go beyond consistency and entailment:
I Probabilistic Reasoning [De Raedt et al., 2007], [Lee and

Yang, 2017], [Baral et al., 2009]

I Preferential Reasoning [Brewka et al., 2015]
I Algebraic Answer Set Counting (AASC) [Eiter and Kiesel,

2020], [Kimmig et al., 2011]

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 1 / 20



Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Algebraic Answer Set Counting

Interest in reasoning problems for Answer Set Programming (ASP)
that go beyond consistency and entailment:
I Probabilistic Reasoning [De Raedt et al., 2007], [Lee and

Yang, 2017], [Baral et al., 2009]
I Preferential Reasoning [Brewka et al., 2015]

I Algebraic Answer Set Counting (AASC) [Eiter and Kiesel,
2020], [Kimmig et al., 2011]

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 1 / 20



Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Algebraic Answer Set Counting

Interest in reasoning problems for Answer Set Programming (ASP)
that go beyond consistency and entailment:
I Probabilistic Reasoning [De Raedt et al., 2007], [Lee and

Yang, 2017], [Baral et al., 2009]
I Preferential Reasoning [Brewka et al., 2015]
I Algebraic Answer Set Counting (AASC) [Eiter and Kiesel,

2020], [Kimmig et al., 2011]

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 1 / 20



Introduction
Treewidth-aware Cycle-Breaking

Path-Preserving Unfolding Sequences
Experimental Results

Conclusion

Algebraic Answer Set Counting
Preliminaries

Solving AASC I

I Solving AASC instances can be #P-, NP- or OptP-hard

I Solvable via

1. answer set enumeration
↪→ only feasible for “few” answer sets

2. dynamic programming on a tree decomposition
↪→ only feasible for very low treewidth

3. compilation into a tractable circuit representation like d-DNNF
or SDD
↪→ compilers like c2d [Darwiche, 2004] work on CNFs
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Solving AASC II

I We favor compilation
↪→ translate ASP to CNF via cycle-breaking

I Compilation has performance guarantees based on treewidth
↪→ find treewidth-aware cycle-breaking
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Example Program

Non-ground smokers program

0.3 :: stress(X )← person(X )

smokes(X )← stress(X )

0.2 :: inf(X ,Y )← friend(X ,Y )

smokes(Y )← smokes(X ), inf(X ,Y )

And input data

person(1) person(2) person(3)

friend(1, 2) friend(2, 3) friend(3, 1)
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Example cont.

Putting the input data and the non-ground program together
results in

0.3 :: stress(x)← for x = 1, 2, 3
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3
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(Positive) Dependency Graph

The (positive) dependency graph of a program Π is the digraph
DEP(Π) = (V ,E ), where
I V = A(Π) is the set of propositional variables that occur in Π

I (b, a) ∈ E if there is a rule a← b1, . . . , bn, not c1, . . . , not cm
in Π with b = bi

Theorem ([Fages, 1994])
If DEP(Π) is acyclic, then Clark(Π), the Clark-completion of Π, is
a propositional formula whose models are the answer sets of Π.
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Example cont.
The ground program. . .

0.3 :: stress(x)← for x = 1, 2, 3
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

. . . has dependency graph

smokes(1) smokes(2)

smokes(3)

stress(1)

stress(2)

stress(3)

inf(3, 1)

inf(1, 2)

inf(2, 3)
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TP -Unfolding

Idea

I We need all the possible acyclic derivations for each atom

I Problem: we can only get all the derivations if we have those
of the other atoms

I Idea: introduce copies of atoms that
I capture increasing subsets of the derivations

I only use derivations with probabilistic facts or already
introduced copies

I Do this iteratively until a (semantic) fixed point is reached

I Insight: the order in which atoms are considered is crucial!
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TP -Unfolding

Example cont.

0.3 :: stress(x)← for x = 1, 2, 3 (1)
smokes(x)← stress(x) for x = 1, 2, 3

0.2 :: inf(x , y)← for x + 1 ≡ y mod 3 (2)
smokes(y)← smokes(x), inf(x , y) for x + 1 ≡ y mod 3

Can be unfolded to (1), (2) and

smokes(1)1 ← stress(1) smokes(1)1 ← inf(3, 1),⊥
smokes(2)1 ← stress(2) smokes(2)1 ← inf(1, 2), smokes(1)1

smokes(3)1 ← stress(3) smokes(3)1 ← inf(2, 3), smokes(2)1

smokes(1)2 ← stress(1) smokes(1)2 ← inf(3, 1), smokes(3)1

smokes(2)2 ← stress(2) smokes(2)2 ← inf(1, 2), smokes(1)2
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TP -Unfolding

Algorithm 1 TP -Unfold(Π, s)

Input A program Π and an unfolding sequence s ∈ A(Π)∗.
Output An acyclic program Π′.
1: last = {a 7→ ⊥ | a ∈ A(Π)}
2: cnt = {a 7→ 0 | a ∈ A(Π)}
3: for i = 1, . . . , len(s) do
4: if isLastOccurrence(si , i , s) then
5: head = si
6: else
7: head = s

cnt(si )+1
i

8: for si ← b1, . . . , bn, not c1, . . . , not cm ∈ Π do
9: Add head← last(b1), . . . , last(bn), not c1, . . . , not cm

10: last(si ) = head
11: cnt(si ) = cnt(si ) + 1
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Algorithm 2 TP -Unfold(Π, s)

Input A program Π and an unfolding sequence s ∈ A(Π)∗.
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TP -Unfolding

Properties

I Acyclicity X

I Faithfulness, i.e., bijective preserving of answer sets

Theorem
X, if for every simple directed path π = (a1, . . . , an) in DEP(Π)
there is a directed path πc = (ac11 , . . . , a

cn
n ) in

DEP(TP -Unfold(Π, s)).
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Good Unfolding Sequences?

I We need path preserving unfolding sequences

I What else makes an unfolding sequence good?

Lemma
Let Π be an answer set program with treewidth k and s ∈ A(Π)∗ be
an unfolding sequence. If every variable occurs at most m times in
s, then the treewidth of TP -Unfold(Π, s) is less or equal to k ·m.

I We are interested in path preserving m-unfolding sequences
with small m

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 12 / 20
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Component-Boosted Backdoor Size

Definition (cbs(G ))
Let G be a digraph. Then cbs(G ), the component-boosted
backdoor size of G , is
I 1, if G is acyclic (which includes V (G ) = ∅)

I 2, if G is a polytree, i.e. the undirected version of G is
connected and acyclic

I max{cbs(C ) | C ∈ SCC(G )}, if G is cyclic but not strongly
connected

I min{cbs(G \ S) · (|S |+ 1) | S ⊆ V (G )} otherwise

Intuitively, cbs(G ) measures the cyclicity of G by decomposition
into “easy to solve” subgraphs
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Component-Boosted Backdoor Size cont.

How does this help us?

Theorem
For every digraph G there exists a path preserving cbs(G )-unfolding
sequence.
For the original point of interest this means that:

Theorem
For every answer set program Π, there exists an unfolding sequence
s ∈ A(Π)∗ such that
1. the answer sets are preserved bijectively
2. the treewidth of TP -Unfold(Π, s) is less or equal to

k · cbs(DEP(Π)), where k is the treewidth of Π.
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Benchmark Settings
Results

Scenarios

S1 Probabilistic reasoning: Computing probabilities for atoms of
Problog programs

S2 Counting (small number of solutions on average): Counting
the number of different paths between stations in public
transport networks

S3 Counting (many solutions on average): Counting conflict-free
extensions in abstract argumentation

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 15 / 20
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Benchmark Settings
Results

Solvers

I Problog, version 2.1.0.42, run with arguments “-k sdd”

I clingo, version 5.4.0, run with arguments “-q -n 0”

I lp2sat+c2d: cycle breaking due to [Bomanson, 2017] followed
by compilation using c2d [Darwiche, 2004]

I aspmc+c2d: our cycle breaking followed by compilation using
c2d [Darwiche, 2004]
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Benchmark Settings
Results

Results S1
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Benchmark Settings
Results

Results S2
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Benchmark Settings
Results

Results S3

solver tw ranges
configuration

∑
0-300 300-600 >600 unique time[h]

aspmc+c2d 241 185 26 30 12 45.16
lp2sat+c2d 182 182 0 0 0 73.85
clingo 144 97 21 26 2 94.78

Thomas Eiter, Markus Hecher, Rafael Kiesel ASP2SAT 19 / 20
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Conclusions

I cbs(.) measures cyclicity of digraphs

I TP -unfolding allows treewidth-aware cycle-breaking

I Our prototypical implementation partially outperforms other
solvers
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Case 1: DAG

I We can take any unfolding sequence s that is in topological
order

I Such an s can be constructed by iteratively removing a vertex
a without ancestors from G and appending it to s

v1 v2
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v4 v5 v6

v
(1)
1

v
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(1)
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Use unfolding sequence s = v1

v2v3v4v5v6

.
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Case 2: Polytree
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Use unfolding sequence s = spostspre , where
spost = v4v5v2v3v1, spre = v3v2v5v4.
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Case 3: Cyclic but not Strongly Connected

I We can handle each strongly connected component
Ci , i = 1, . . . , k of G separately and combine them

I Take s = si1 . . . sik (in topological order of the SCCs), where sij
is a path-preserving cbs(Cij )-unfolding sequence for Cij

C1 C2

C3

C4 C5 C6

UF(C1, s1) UF(C2, s2)

UF(C3, s3)

UF(C4, s4) UF(C5, s5) UF(C6, s6)

Use unfolding sequence s = s1s2s3s4s5s6.
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Case 4: Strongly Connected but not Polytree

I G is strongly connected but not a polytree

I Cut out S = {a1, . . . , an} ⊆ V (G )

I Obtain a path-preserving cbs(G \ S)-unfolding sequence sr for
G \ S

I Use s = (sr sS)|S |sr , were sS = a1 . . . an
I s is a path-preserving cbs(G \ S) · (|S |+ 1)-unfolding sequence

for G

UF(G \ S , sr )

S

. . .

. . .

UF(G \ S , sr )

S

UF(G \ S , sr )
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