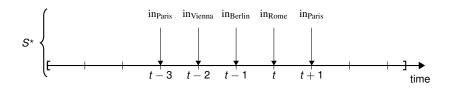
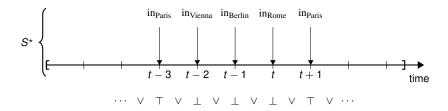
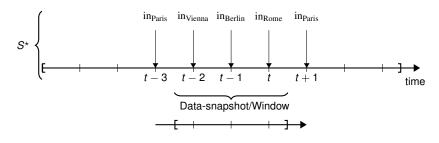
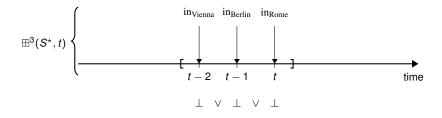
Weighted LARS for Quantitative Stream Reasoning


Thomas Eiter, Rafael Kiesel

Vienna University of Technology funded by FWF project W1255-N23


29th of August 2020




▶ Does Peter visit Paris?

- Does Peter visit Paris?
- $\rightarrow \ \Diamond in_{Paris}$

- Does Peter visit Paris?
- $\rightarrow \Diamond in_{Paris}$
- Did Peter visit Paris in the last three days?

- Does Peter visit Paris?
- $\rightarrow \Diamond in_{Paris}$
- Did Peter visit Paris in the last three days?
- $\rightarrow \ \boxplus^3 \diamondsuit in_{Paris}$

How often does Peter visit Paris?

- ▶ How often does Peter visit Paris?
- → Answer quantitative queries

- ► How often does Peter visit Paris?
- → Answer quantitative queries
- ▶ Which journey is optimal w.r.t. how often Paris is visited?

- How often does Peter visit Paris?
- → Answer quantitative queries
- ▶ Which journey is optimal w.r.t. how often Paris is visited?
- ▶ LARS Programs, consisting of rules $\alpha \leftarrow \beta$ with ASP-semantics give us answer streams

- ▶ How often does Peter visit Paris?
- → Answer quantitative queries
- ▶ Which journey is optimal w.r.t. how often Paris is visited?
- ▶ LARS Programs, consisting of rules $\alpha \leftarrow \beta$ with ASP-semantics give us answer streams
- Answer streams correspond to possible journeys

- How often does Peter visit Paris?
- → Answer quantitative queries
- ▶ Which journey is optimal w.r.t. how often Paris is visited?
- ▶ LARS Programs, consisting of rules $\alpha \leftarrow \beta$ with ASP-semantics give us answer streams
- Answer streams correspond to possible journeys
- → Express *preferences* over answer streams

- ▶ How often does Peter visit Paris?
- → Answer quantitative queries
- ▶ Which journey is optimal w.r.t. how often Paris is visited?
- ▶ LARS Programs, consisting of rules $\alpha \leftarrow \beta$ with ASP-semantics give us answer streams
- Answer streams correspond to possible journeys
- → Express preferences over answer streams
- Other quantitative questions (Probabilities, Weighted Model Counting, ...)

Quantitative extension(s) needed!

► Ad Hoc?

Quantitative extension(s) needed!

- ► Ad Hoc?
- Better: Framework! But, how? Need Computation

Quantitative extension(s) needed!

- ► Ad Hoc?
- Better: Framework! But, how? Need Computation
- ▶ Approach: Use Semirings $(R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$, which are abstract models of computation

Quantitative extension(s) needed!

- Ad Hoc?
- Better: Framework! But, how? Need Computation
- ▶ Approach: Use Semirings $(R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$, which are abstract models of computation

$$\begin{array}{ll} \text{(Assoc)} \ (a \oplus b) \oplus c = a \oplus (b \oplus c) & (a \otimes b) \otimes c = a \otimes (b \otimes c) \\ \text{(Id)} & e_{\oplus} \oplus a = a = a \oplus e_{\oplus} & e_{\otimes} \otimes a = a = a \otimes e_{\otimes} \\ \text{(Comm)} & a \oplus b = b \oplus a \\ & \text{(Distr.)} & \begin{array}{ll} a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c) \\ (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c) \\ (\text{Ann)} & e_{\oplus} \otimes a = e_{\oplus} = a \otimes e_{\oplus} \end{array}$$

Semiring Examples

Examples are

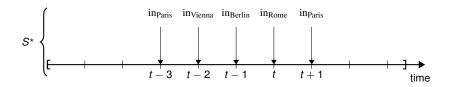
- ▶ $\mathbb{S} = (\mathbb{S}, +, \cdot, 0, 1)$, for $\mathbb{S} \in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$, the semiring over the numbers in \mathbb{S} . It is typically used for arithmetic.
- $ightharpoonup \mathcal{R}_{max} = (\mathbb{Q} \cup \{-\infty, \infty\}, \max, +, -\infty, 0)$, the max tropical semiring. It is typically used in the context of optimisation.
- ▶ $\mathbb{B} = (\{0,1\}, \vee, \wedge, 0, 1)$, the Boolean semiring. It is typically used for classical Boolean constraints.

Weighted LARS

- ▶ Evaluate formulas w.r.t. (S^*, S, t)
- \triangleright S^* starting stream, S current stream, t time

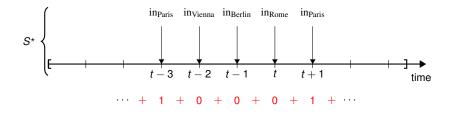
Weighted LARS

- ▶ Evaluate formulas w.r.t. (S^*, S, t)
- \triangleright S^* starting stream, S current stream, t time


Formula	LARS
constant	\perp, \top
p	true, false
$\neg \alpha$	$true \leftrightarrow false$
$\alpha \wedge \beta$	lpha and eta
$\alpha \vee \beta$	lpha or eta
$\Box \alpha$	for all t : α
$\Diamond \alpha$	exists t : α
$0_{t'} \alpha$	(S^*, S, t) changes to (S^*, S, t')
$\boxplus^{\mathbf{w}} \alpha$	(S^*, S, t) changes to $(S^*, w(S, t), t)$
$\triangleright \alpha$	(S^*, S, t) changes to (S^*, S^*, t)

Weighted LARS

- ▶ Evaluate formulas w.r.t. (S^*, S, t)
- \triangleright S^* starting stream, S current stream, t time


Formula	LARS	Weighted LARS	
constant	\perp , \top	semiring value <i>k</i>	
р	true, false	one, zero	
$\neg \alpha$	$true \leftrightarrow false$	zero o one, rest o zero	
$\alpha \wedge \beta$	lpha and eta	lpha times eta	
$\alpha \vee \beta$	lpha or eta	lpha plus eta	
$\Box \alpha$	for all t : α	product of α over t	
$\Diamond \alpha$	exists t : α	sum of α over t	
$0_{t'} \alpha$	(S^*, S, t) changes to (S^*, S, t')		
$\boxplus^{\mathbf{w}} \alpha$	(S^*, S, t) changes to $(S^*, w(S, t), t)$		
$\triangleright \alpha$	(S^*, S, t) changes to (S^*, S^*, t)		

Example I

▶ How often does Peter visit Paris?

Example I

- ► How often does Peter visit Paris?
- $\rightarrow \ \lozenge \text{in}_{Paris}$ over the natural number semiring $(\mathbb{N},+,\cdot,0,1)$

LARS measure

▶ Goal: Assign answer streams a weight using α

LARS measure

- Goal: Assign answer streams a weight using α
- ▶ A *LARS Measure* μ is defined by a triple $\langle \Pi, \alpha, \mathcal{R} \rangle$, where
 - Π is a LARS program
 - $ightharpoonup \alpha$ is a weighted LARS formula over $\mathcal R$
 - R is a semiring

LARS measure

- Goal: Assign answer streams a weight using α
- ▶ A *LARS Measure* μ is defined by a triple $\langle \Pi, \alpha, \mathcal{R} \rangle$, where
 - Π is a LARS program
 - $ightharpoonup \alpha$ is a weighted LARS formula over $\mathcal R$
 - R is a semiring
- We set

$$\mu(\mathcal{S},t) = \left\{ \begin{array}{ll} \llbracket \alpha \rrbracket_{\mathcal{R}}(\mathcal{S},\mathcal{S},t) & \text{if \mathcal{S} is an answer stream1 of Π at t,} \\ e_{\oplus} & \text{otherwise.} \end{array} \right.$$

¹S is an answer stream of Π at t if (S, S, t) satisfies Π and (S, S, t) is a minimal model of the reduct $\Pi^{S,t} = \{\alpha \leftarrow \beta \in \Pi \mid (S, S, t) \text{ satisfies } \beta\}$

Expressivity Results I

LARS measures can be employed for ...

- Preferential Reasoning, i.e., choosing optimal answer streams w.r.t. some criteria
- Probabilistic Reasoning, i.e., assigning answer streams a probability

Weighted Model Counting, i.e., aggregating the weights of all answer streams

Expressivity Results I

- ... and enable subsumption of corresponding ASP-extensions
 - Preferential Reasoning Weak Constraints [Buccafurri et al., 2000] (part.) asprin [Brewka et al., 2015]
 - Probabilistic Reasoning
 P-log [Baral et al., 2009]
 LP^{MLN} [Lee and Yang, 2017]
 ProbLog [De Raedt et al., 2007]
 - Weighted Model Counting aProbLog [Kimmig et al., 2011]

Expressivity Results II

- A plain fragment of LARS measures is expressively equivalent to
 - Weighted Automata (Finite State Machines with weighted transition function)
 - Rational Expressions (Regular Expressions with weights)

Expressivity Results II

- A plain fragment of LARS measures is expressively equivalent to
 - Weighted Automata (Finite State Machines with weighted transition function)
 - Rational Expressions (Regular Expressions with weights)
- Shows the expressiveness of LARS measures

Expressivity Results II

- A plain fragment of LARS measures is expressively equivalent to
 - Weighted Automata (Finite State Machines with weighted transition function)
 - Rational Expressions (Regular Expressions with weights)
- Shows the expressiveness of LARS measures
- Gives a rule-based alternative for specification via automata

Complexity Results

The evaluation of LARS measures

- is PSPACE-hard for any non-trivial semiring (LARS is already PSPACE-complete)
- possible in FPSPACE(poly) for under mild restrictions on the semiring and weighted formula

Complexity Results

The evaluation of LARS measures

- is PSPACE-hard for any non-trivial semiring (LARS is already PSPACE-complete)
- possible in FPSPACE(poly) for under mild restrictions on the semiring and weighted formula

Preferential Reasoning (over a restricted LARS measures)

- Preference Checking is Π^p₂-complete
- Brave Preferential Reasoning is Σ^ρ₃-complete

Conclusion

- LARS enables expressive stream reasoning
- Weighted LARS and LARS measures as a general underlying framework for quantitative stream reasoning
- Lift quantitative LP-extensions to the streaming context
- Restrictions on LARS measures can tame the complexity

Conclusion

- LARS enables expressive stream reasoning
- Weighted LARS and LARS measures as a general underlying framework for quantitative stream reasoning
- Lift quantitative LP-extensions to the streaming context
- Restrictions on LARS measures can tame the complexity
- ► ASP(\mathcal{AC}) at ICLP 2020
 - Weighted formulas inside programs

References I

Theory and Practice of Logic Programming, 9(1):57–144, 2009.

Gerhard Brewka, James Delgrande, Javier Romero, and Torsten Schaub.

asprin: Customizing answer set preferences without a headache.

In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

References II

- Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing disjunctive datalog by constraints.

 IEEE Transactions on Knowledge and Data Engineering, 12(5):845–860, 2000.
- Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and its application in link discovery.

 In *IJCAI*, volume 7, pages 2462–2467. Hyderabad, 2007.
- Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. An algebraic prolog for reasoning about possible worlds. In *Twenty-Fifth AAAI Conference on Artificial Intelligence*, 2011.

References III

