On the Complexity of Sum-of-Products Problems over Semirings

Thomas Eiter, Rafael Kiesel

Vienna University of Technology funded by FWF project W1255-N23

General Completeness Result $SAT(\mathcal{R})$ and Classical Complexity Conclusion

Sum-of-Products Problem Motivation

Sum-of-Products [Bacchus et al., 2009]

- given a finite domain \mathcal{D} and
- functions $f_i : \mathcal{D}^{n_i} \to \mathbb{R} \ (i = 1, \dots, n)$

compute

$$\sum_{X_1,\ldots,X_m\in\mathcal{D}}\prod_{i=1}^n f_i(\vec{Y}_i),$$

• where \vec{Y}_i is a vector of variables from $\{X_1, \ldots, X_m\}$.

Sum-of-Products Problem Motivation

Sum-of-Products over Semirings [Bacchus et al., 2009]

- More generally, over some semiring $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$:
- \blacktriangleright given a finite domain \mathcal{D} and
- functions $f_i : \mathcal{D}^{n_i} \to \mathbb{R} \ (i = 1, \dots, n)$

compute

$$\bigoplus_{X_1,\ldots,X_m\in\mathcal{D}}\bigotimes_{i=1}^n f_i(\vec{Y}_i),$$

• where \vec{Y}_i is a vector of variables from $\{X_1, \ldots, X_m\}$.

Sum-of-Products Problem Motivation

Semirings

A semiring is an algebraic structure $(R,\oplus,\otimes,e_\oplus,e_\otimes)$, s.t.

- ▶ (R, \oplus, e_{\oplus}) is a commutative monoid with neutral element e_{\oplus}
- ▶ $(R, \otimes, e_{\otimes})$ is a monoid with neutral element e_{\otimes}
- multiplication (\otimes) distributes over addition (\oplus)
- multiplication by e_{\oplus} annihilates R

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{General Completeness Result}\\ \mbox{SAT}(\mathcal{R}) \mbox{ and Classical Complexity}\\ \mbox{Conclusion} \end{array}$

Sum-of-Products Problem Motivation

Semiring Examples

▶
$$\mathbb{B} = (\{\bot, \top\}, \lor, \land, \bot, \top)$$
 boolean

$$\blacktriangleright \qquad \mathbb{N} = \quad (\mathbb{N}, +, \cdot, 0, 1) \qquad \qquad \mathsf{natural numbers}$$

▶
$$\mathcal{R}_{max} = (\mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0)$$
 max-plus

Sum-of-Products Problem Motivation

Semiring Examples

$$\mathbb{B} = (\{\bot, \top\}, \lor, \land, \bot, \top) \qquad \text{boolean}$$
$$\bigvee_{a_1, \dots, a_n \in \{0, 1\}} \bigwedge_{j=1}^m C_j$$
$$\mathbb{N} = (\mathbb{N}, +, \cdot, 0, 1) \qquad \text{natural numbers}$$

$$\blacktriangleright \quad \mathcal{R}_{max} = \quad (\mathbb{R} \cup \{-\infty\}, \mathsf{max}, +, -\infty, \mathsf{0}) \quad \mathsf{max-plus}$$

Sum-of-Products Problem Motivation

Semiring Examples

$$\mathbb{B} = (\{\bot, \top\}, \lor, \land, \bot, \top) \qquad \text{boolean}$$

$$\bigvee \bigwedge_{a_1, \dots, a_n \in \{0,1\}} \bigwedge_{j=1}^m C_j$$

$$\mathbb{N} = (\mathbb{N}, +, \cdot, 0, 1) \qquad \text{natural numbers}$$

$$\sum_{a_1, \dots, a_n \in \{0,1\}} \prod_{j=1}^m \mathbb{1}_{C_j}$$

$$\mathbb{R}_{max} = (\mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0) \quad \text{max-plus}$$

Sum-of-Products Problem Motivation

Semiring Examples

$$\mathbb{B} = (\{\bot, \top\}, \lor, \land, \bot, \top) \qquad \text{boolean}$$

$$\bigvee \bigwedge_{a_1, \dots, a_n \in \{0, 1\}} \bigwedge_{j=1}^m C_j$$

$$\mathbb{N} = (\mathbb{N}, +, \cdot, 0, 1) \qquad \text{natural numbers}$$

$$\sum_{\substack{a_1, \dots, a_n \in \{0, 1\}}} \prod_{j=1}^m \mathbb{1}_{C_j}$$

$$\mathbb{R}_{max} = (\mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0) \quad \text{max-plus}$$

$$\max_{a_1, \dots, a_n \in \{0, 1\}} \sum_{j=1}^m w_j \mathbb{1}_{C_j}$$

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{General Completeness Result}\\ \mbox{SAT}(\mathcal{R}) \mbox{ and Classical Complexity}\\ \mbox{Conclusion} \end{array}$

Sum-of-Products Problem Motivation

Semirings in Computer Science

Semirings were successfully used to parameterize "calculation" in

Semiring-based Constraint Satisfaction Problems

[Bistarelli et al., 1999]

Provenance

[Green et al., 2007]

Semiring-based Argumentation

[Bistarelli and Santini, 2010]

Algebraic Model Counting

[Kimmig et al., 2017]

 Algebraic Constraints in Answer Set Programming [Eiter and Kiesel, 2020]

General Completeness Result $SAT(\mathcal{R})$ and Classical Complexity Conclusion

Sum-of-Products Problem Motivation

Complexity?

- Completeness results for some specific semirings
 - ▶ #P-complete over N
 - ► NP-complete over B
 - OptP-complete over \mathcal{R}_{max}

General Completeness Result $SAT(\mathcal{R})$ and Classical Complexity Conclusion

Sum-of-Products Problem Motivation

Complexity?

Known results:

- Completeness results for some specific semirings
 - ▶ #P-complete over N
 - ► NP-complete over B
 - OptP-complete over \mathcal{R}_{max}

▶ NP-hardness for idempotent semirings [Bistarelli et al., 1999]

General Completeness Result $SAT(\mathcal{R})$ and Classical Complexity Conclusion

Sum-of-Products Problem Motivation

Complexity?

- Completeness results for some specific semirings
 - ▶ #P-complete over N
 - ► NP-complete over B
 - OptP-complete over \mathcal{R}_{max}
- NP-hardness for idempotent semirings [Bistarelli *et al.*, 1999]
 But:
 - No results for semirings in general

General Completeness Result $SAT(\mathcal{R})$ and Classical Complexity Conclusion

Sum-of-Products Problem Motivation

Complexity?

- Completeness results for some specific semirings
 - ▶ #P-complete over N
 - ► NP-complete over B
 - OptP-complete over \mathcal{R}_{max}
- NP-hardness for idempotent semirings [Bistarelli *et al.*, 1999]
 But:
 - No results for semirings in general
 - \blacktriangleright #P already seems quite hard and there are semirings that are even harder than $\mathbb N$

General Completeness Result $SAT(\mathcal{R})$ and Classical Complexity Conclusion

Sum-of-Products Problem Motivation

Complexity?

- Completeness results for some specific semirings
 - ▶ #P-complete over N
 - ► NP-complete over B
 - OptP-complete over R_{max}
- ► NP-hardness for idempotent semirings [Bistarelli *et al.*, 1999] But:
 - No results for semirings in general
 - \blacktriangleright #P already seems quite hard and there are semirings that are even harder than $\mathbb N$
- \hookrightarrow Need a more in-depth complexity analysis!

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{General Completeness Result}\\ \mbox{SAT}(\mathcal{R}) \mbox{ and Classical Complexity}\\ \mbox{Conclusion} \end{array}$

SAT(\mathcal{R}) Semiring Turing Machines NP(\mathcal{R})

Weighted Propositional Formulas

▶ Let $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$ be a semiring

Syntax

$$\alpha ::= k \mid v \mid \neg v \mid \alpha + \alpha \mid \alpha * \alpha,$$

where $k \in R$ and v is a variable.

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{General Completeness Result}\\ \mbox{SAT}(\mathcal{R}) \mbox{ and Classical Complexity}\\ \mbox{Conclusion} \end{array}$

SAT(\mathcal{R}) Semiring Turing Machines NP(\mathcal{R})

Weighted Propositional Formulas

▶ Let $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$ be a semiring

Syntax

$$\alpha ::= k \mid v \mid \neg v \mid \alpha + \alpha \mid \alpha * \alpha,$$

where $k \in R$ and v is a variable.

• Semantics of α given interpretation $\mathcal I$

$$\llbracket k \rrbracket_{\mathcal{R}}(\mathcal{I}) = k \quad (k \in R)$$
$$\llbracket \ell \rrbracket_{\mathcal{R}}(\mathcal{I}) = \begin{cases} e_{\otimes} & \ell \in \mathcal{I} \\ e_{\oplus} & \text{otherwise.} \end{cases} \quad (\ell \in \{v, \neg v\})$$
$$\llbracket \alpha_1 + \alpha_2 \rrbracket_{\mathcal{R}}(\mathcal{I}) = \llbracket \alpha_1 \rrbracket_{\mathcal{R}}(\mathcal{I}) \oplus \llbracket \alpha_2 \rrbracket_{\mathcal{R}}(\mathcal{I})$$
$$\llbracket \alpha_1 * \alpha_2 \rrbracket_{\mathcal{R}}(\mathcal{I}) = \llbracket \alpha_1 \rrbracket_{\mathcal{R}}(\mathcal{I}) \otimes \llbracket \alpha_2 \rrbracket_{\mathcal{R}}(\mathcal{I})$$

SAT(\mathcal{R}) Semiring Turing Machines NP(\mathcal{R})

 $SAT(\mathcal{R})$

• Define SAT(\mathcal{R}) as a generalization of SAT over semirings

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{General Completeness Result}\\ \mbox{SAT}(\mathcal{R}) \mbox{ and Classical Complexity}\\ \mbox{Conclusion} \end{array}$

SAT(\mathcal{R}) Semiring Turing Machines NP(\mathcal{R})

$\mathsf{SAT}(\mathcal{R})$

▶ Define SAT(*R*) as a generalization of SAT over semirings
 → SAT should be equivalent to SAT(B)

SAT(\mathcal{R}) Semiring Turing Machines NP(\mathcal{R})

 $SAT(\mathcal{R})$

▶ Define SAT(*R*) as a generalization of SAT over semirings
→ SAT should be equivalent to SAT(B)

 $SAT(\mathcal{R})$:

Given a weighted formula α over variables in ${\mathcal V}$ compute

 $\bigoplus_{\mathcal{I}\in\mathsf{Int}(\mathcal{V})}\llbracket\alpha\rrbracket_{\mathcal{R}}(\mathcal{I})$

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{General Completeness Result}\\ \mbox{SAT}(\mathcal{R}) \mbox{ and Classical Complexity}\\ \mbox{Conclusion} \end{array}$

 $SAT(\mathcal{R})$ Semiring Turing Machines $NP(\mathcal{R})$

Semiring Turing Machines (SRTM)

• Aim: Capture SAT(\mathcal{R}) but not more

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{General Completeness Result}\\ \mbox{SAT}(\mathcal{R}) \mbox{ and Classical Complexity}\\ \mbox{Conclusion} \end{array}$

 $SAT(\mathcal{R})$ Semiring Turing Machines $NP(\mathcal{R})$

Semiring Turing Machines (SRTM)

- ▶ Aim: Capture SAT(*R*) but not more
- Allow semiring values $r \in R$ on the tape

 $SAT(\mathcal{R})$ Semiring Turing Machines $NP(\mathcal{R})$

Semiring Turing Machines (SRTM)

- Aim: Capture SAT(R) but not more
- Allow semiring values $r \in R$ on the tape
- ► Use a weighted transition relation $\delta \subseteq (Q \times (\Sigma \cup R)) \times (Q \times (\Sigma \cup R)) \times \{-1, 1\} \times \mathbb{R}^1$

 ${}^{\mathbf{1}}\delta$ may be infinite but is always finitely representable

 $SAT(\mathcal{R})$ Semiring Turing Machines $NP(\mathcal{R})$

Semiring Turing Machines (SRTM)

- Aim: Capture SAT(R) but not more
- Allow semiring values $r \in R$ on the tape
- Use a weighted transition relation $\delta \subseteq (Q \times (\Sigma \cup R)) \times (Q \times (\Sigma \cup R)) \times \{-1, 1\} \times \mathbb{R}^1$
- ► For each $((q_1, \sigma_1), (q_2, \sigma_2), e, r) \in \delta$:
 - 1. cannot write or overwrite semiring values $(\sigma_1 \in R \text{ or } \sigma_2 \in R \text{ implies } \sigma_1 = \sigma_2)$

 $^{^1\}delta$ may be infinite but is always finitely representable

 $SAT(\mathcal{R})$ Semiring Turing Machines $NP(\mathcal{R})$

Semiring Turing Machines (SRTM)

- Aim: Capture SAT(R) but not more
- Allow semiring values $r \in R$ on the tape
- Use a weighted transition relation $\delta \subseteq (Q \times (\Sigma \cup R)) \times (Q \times (\Sigma \cup R)) \times \{-1, 1\} \times \mathbb{R}^{1}$
- ► For each $((q_1, \sigma_1), (q_2, \sigma_2), e, r) \in \delta$:
 - 1. cannot write or overwrite semiring values $(\sigma_1 \in R \text{ or } \sigma_2 \in R \text{ implies } \sigma_1 = \sigma_2)$
 - 2. transition only with $r \in R'$ or value under head $(r \in R' \text{ or } r = \sigma_1 \in R)$

 $^{1}\delta$ may be infinite but is always finitely representable

Thomas Eiter, Rafael Kiesel

 $SAT(\mathcal{R})$ Semiring Turing Machines $NP(\mathcal{R})$

Semiring Turing Machines (SRTM)

- Aim: Capture SAT(R) but not more
- Allow semiring values $r \in R$ on the tape
- Use a weighted transition relation $\delta \subseteq (Q \times (\Sigma \cup R)) \times (Q \times (\Sigma \cup R)) \times \{-1, 1\} \times \mathbb{R}^{1}$
- ► For each $((q_1, \sigma_1), (q_2, \sigma_2), e, r) \in \delta$:
 - 1. cannot write or overwrite semiring values $(\sigma_1 \in R \text{ or } \sigma_2 \in R \text{ implies } \sigma_1 = \sigma_2)$
 - 2. transition only with $r \in R'$ or value under head $(r \in R' \text{ or } r = \sigma_1 \in R)$
 - 3. cannot differentiate semiring values $(\sigma_1 \in R \text{ implies that for all } \sigma'_1 \in R \text{ we have } ((q_1, \sigma'_1), (q_2, \sigma'_1), e, r') \in \delta$, where $r' = \sigma'_1$ if $r = \sigma_1$ and else r' = r)

 $^{^{1}\}delta$ may be infinite but is always finitely representable

 $SAT(\mathcal{R})$ Semiring Turing Machines $NP(\mathcal{R})$

SRTM Output

Let M be an SRTM and c = (q, w, n) a configuration, where q is a state, w is the string on the tape and n is the head position

 $SAT(\mathcal{R})$ Semiring Turing Machines $NP(\mathcal{R})$

SRTM Output

- Let M be an SRTM and c = (q, w, n) a configuration, where q is a state, w is the string on the tape and n is the head position
- The value v(c) of c w.r.t. M is
 - e_⊗, if there are no possible transitions from c to another configuration

 $\begin{array}{l} \mathsf{SAT}(\mathcal{R}) \\ \textbf{Semiring Turing Machines} \\ \mathsf{NP}(\mathcal{R}) \end{array}$

SRTM Output

Let M be an SRTM and c = (q, w, n) a configuration, where q is a state, w is the string on the tape and n is the head position

• The value v(c) of c w.r.t. M is

- e_⊗, if there are no possible transitions from c to another configuration
- $\bigoplus_{c \xrightarrow{r} c'} r \otimes v(c')$, otherwise, where $c \xrightarrow{r} c'$ denotes that M can transit from c to c' with weight r

 $\begin{array}{l} \mathsf{SAT}(\mathcal{R}) \\ \mathsf{Semiring} \ \mathsf{Turing} \ \mathsf{Machines} \\ \mathsf{NP}(\mathcal{R}) \end{array}$

SRTM Output

- Let M be an SRTM and c = (q, w, n) a configuration, where q is a state, w is the string on the tape and n is the head position
- The value v(c) of c w.r.t. M is
 - e_⊗, if there are no possible transitions from c to another configuration
 - $\bigoplus_{\substack{c \\ \to c'}} r \otimes v(c')$, otherwise, where $c \xrightarrow{+} c'$ denotes that M can transit from c to c' with weight r
- The output is v(c₀), the value of the initial configuration c₀.

 $\begin{array}{c} \text{Introduction} \\ \textbf{General Completeness Result} \\ \text{SAT}(\mathcal{R}) \text{ and Classical Complexity} \\ \text{Conclusion} \end{array} \begin{array}{c} \text{SAT}(\mathcal{R}) \\ \textbf{Semiring Turing Machines} \\ \textbf{NP}(\mathcal{R}) \end{array}$

 $\mathsf{NP}(\mathcal{R})$

 NP(R) is the class of all functions computable in polynomial time by an SRTM over R.

 $SAT(\mathcal{R})$ Semiring Turing Machines $NP(\mathcal{R})$

 $\mathsf{NP}(\mathcal{R})$

NP(R) is the class of all functions computable in polynomial time by an SRTM over R.

Theorem

SAT(\mathcal{R}) is NP(\mathcal{R})-complete with respect to polynomial transformations², for every semiring \mathcal{R} .

 $^{^{2}}$ i.e. the same kind we use for NP-completeness

 $SAT(\mathcal{R})$ Semiring Turing Machines NP(\mathcal{R})

$NP(\mathcal{R})$ -complete Problems

The following problems are NP(\mathcal{R})-complete by reduction from SAT(\mathcal{R}):

Sum-of-Products

[Bacchus et al., 2009]

- Semiring-based Constraint Satisfaction Problems
 - [Bistarelli et al., 1999]
- Algebraic Model Counting

[Kimmig et al., 2017]

Algebraic Constraint Evaluation

[Eiter and Kiesel, 2020]

Encodings Epimorphisms

Encodings

 For classical TMs we need to represent semiring values in a finite alphabet

Encodings

- For classical TMs we need to represent semiring values in a finite alphabet
- Let $\mathcal{R} = (R, \oplus, \otimes, e_\oplus, e_\otimes)$ be a semiring
- ▶ An injective function $e: R \rightarrow \{0,1\}^*$ is an *encoding function*

Encodings

- For classical TMs we need to represent semiring values in a finite alphabet
- ▶ Let $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$ be a semiring
- An injective function $e: R \to \{0,1\}^*$ is an *encoding function*

Example

The binary representation $bin(n) = b_0 \dots b_m$ such that $n = \sum_{i=1}^m b_i 2^i$ is an encoding function for the semiring \mathbb{N} of the natural numbers

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{General Completeness Result}\\ \mbox{SAT}(\mathcal{R}) \mbox{ and Classical Complexity}\\ \mbox{Conclusion} \end{array}$

Encodings Epimorphisms

The Encoding Matters!

- Binary encoding: Knapsack is NP-hard
- Unary encoding: Knapsack is in P

Encodings Epimorphisms

The Encoding Matters!

- Binary encoding: Knapsack is NP-hard
- Unary encoding: Knapsack is in P
- There is a semiring whose multiplication is undecidable or linear time depending on the encoding

Encodings Epimorphisms

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{General Completeness Result}\\ \mbox{SAT}(\mathcal{R}) \mbox{ and Classical Complexity}\\ \mbox{Conclusion} \end{array}$

Encodings Epimorphisms

Sources of Complexity

1. Encoding of the input

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{General Completeness Result}\\ \mbox{SAT}(\mathcal{R}) \mbox{ and Classical Complexity}\\ \mbox{Conclusion} \end{array}$

Encodings Epimorphisms

Sources of Complexity

Our intuition:

- 1. Encoding of the input
- 2. Information retained by addition and multiplication

Encodings Epimorphisms

- Our intuition:
 - 1. Encoding of the input
 - 2. Information retained by addition and multiplication
 - $c_1 \lor c_2$ over \mathbb{B} retains whether both c_1, c_2 are 0

Encodings Epimorphisms

- Our intuition:
 - 1. Encoding of the input
 - 2. Information retained by addition and multiplication
 - $c_1 \lor c_2$ over \mathbb{B} retains whether both c_1, c_2 are 0
 - $c_1 + c_2$ over \mathbb{N} retains the sum of c_1, c_2

Encodings Epimorphisms

- Our intuition:
 - 1. Encoding of the input
 - 2. Information retained by addition and multiplication
 - $c_1 \lor c_2$ over \mathbb{B} retains whether both c_1, c_2 are 0
 - $c_1 + c_2$ over \mathbb{N} retains the sum of c_1, c_2
 - $c_1x_1 + c_2x_2$ over $\mathbb{N}[x_1, x_2]$ retains the values c_1, c_2

Encodings Epimorphisms

- Our intuition:
 - 1. Encoding of the input
 - 2. Information retained by addition and multiplication
 - $c_1 \lor c_2$ over \mathbb{B} retains whether both c_1, c_2 are 0
 - $c_1 + c_2$ over \mathbb{N} retains the sum of c_1, c_2
 - $c_1x_1 + c_2x_2$ over $\mathbb{N}[x_1, x_2]$ retains the values c_1, c_2
- ▶ 1. and 2. are orthogonal → we consider 2.

Epimorphisms

▶ Let $\mathcal{R}_i = (R_i, \oplus_i, \otimes_i, e_{\oplus_i}, e_{\otimes_i}), i = 1, 2$ be semirings

Epimorphisms

Encodings Epimorphisms

Epimorphisms

▶ Let $\mathcal{R}_i = (R_i, \oplus_i, \otimes_i, e_{\oplus_i}, e_{\otimes_i}), i = 1, 2$ be semirings

▶ An epimorphism is a surjective function $f : R_1 \rightarrow R_2$ such that for $\odot = \oplus, \otimes$

$$f(r \odot_1 r') = f(r) \odot_2 f(r')$$
 and $f(e_{\odot_1}) = e_{\odot_2}$.

Encodings Epimorphisms

Epimorphisms

▶ Let $\mathcal{R}_i = (R_i, \oplus_i, \otimes_i, e_{\oplus_i}, e_{\otimes_i}), i = 1, 2$ be semirings

▶ An epimorphism is a surjective function $f : R_1 \rightarrow R_2$ such that for $\odot = \oplus, \otimes$

$$f(r \odot_1 r') = f(r) \odot_2 f(r')$$
 and $f(e_{\odot_1}) = e_{\odot_2}$.

If there is an epimorphism from R₁ to R₂, then R₁ retains at least as much information as R₂

Encodings Epimorphisms

Epimorphisms

- ▶ Let $\mathcal{R}_i = (R_i, \oplus_i, \otimes_i, e_{\oplus_i}, e_{\otimes_i}), i = 1, 2$ be semirings
- ▶ An epimorphism is a surjective function $f : R_1 \rightarrow R_2$ such that for $\odot = \oplus, \otimes$

$$f(r \odot_1 r') = f(r) \odot_2 f(r')$$
 and $f(e_{\odot_1}) = e_{\odot_2}$.

If there is an epimorphism from R₁ to R₂, then R₁ retains at least as much information as R₂

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{General Completeness Result}\\ \mbox{SAT}(\mathcal{R}) \mbox{ and Classical Complexity}\\ \mbox{Conclusion} \end{array}$

Encodings Epimorphisms

Epimorphism Theorem

Epimorphisms can be employed similarly to reductions

Epimorphism Theorem

Epimorphisms can be employed similarly to reductions

Theorem

Let $e_i(\mathcal{R}_i), i = 1, 2$ be two encoded semirings, such that

- 1. $SAT(e_1(\mathcal{R}_1))$ is in FPSpace(poly),
- 2. there exists a polynomial time computable epimorphism $f: e_1(R_1) \rightarrow e_2(R_2)$, and
- 3. for each $e_2(r_2) \in e(R_2)$ one can compute in polynomial time $e_1(r_1)$ s.t. $f(e_1(r_1)) = e_2(r_2)$ from $e_2(r_2)$.

Then SAT($e_2(\mathcal{R}_2)$) is counting-reducible to SAT($e_1(\mathcal{R}_1)$).

Encodings Epimorphisms

Epimorphism map

Find membership results for high information retainers

Encodings Epimorphisms

Epimorphism map

Find membership results for high information retainers

Epimorphisms

Epimorphism map

Find membership results for high information retainers

Note: $\mathbb{N}[(x_i)_{\infty}], \mathbb{B}[(x_i)_{\infty}]$ have epimorphisms to every commutative countable (resp. and idempotent) semiring

Encodings Epimorphisms

Negative Results

Theorem Let $\mathcal{R} = \mathbb{N}[(x_i)_{\infty}]$ (resp. $\mathcal{R} = \mathbb{B}[(x_i)_{\infty}]$). The following are equivalent:

- 1. There is an encoding function e for \mathcal{R} s.t.
 - 1) $\| [\![\alpha]\!]_{\mathcal{R}}(\mathcal{I}) \|_{e}$ is polynomial in the size of α , \mathcal{I} ,
 - we can extract the coefficient of x^{j₁}_{i₁}...x^{j_n}_{i_n} from e(r) in polynomial time in ||r||_e, and

3) $||x_i||_e$ is polynomial in *i*,

2. $\#P \subseteq FP/poly$ (resp. NP $\subseteq P/poly$).

Encodings Epimorphisms

Negative Results

Theorem Let $\mathcal{R} = \mathbb{N}[(x_i)_{\infty}]$ (resp. $\mathcal{R} = \mathbb{B}[(x_i)_{\infty}]$). The following are equivalent:

- 1. There is an encoding function e for \mathcal{R} s.t.
 - 1) $\| [\![\alpha]\!]_{\mathcal{R}}(\mathcal{I}) \|_{e}$ is polynomial in the size of α , \mathcal{I} ,
 - we can extract the coefficient of x^{j₁}_{i₁}...x^{j_n}_{i_n} from e(r) in polynomial time in ||r||_e, and

3) $||x_i||_e$ is polynomial in *i*,

2. $\#P \subseteq FP/poly$ (resp. NP $\subseteq P/poly$).

link to open complexity theoretic questions!

Encodings Epimorphisms

Positive Results

Theorem

Let e be the encoding function that represents exponents in unary and coefficients in binary. Then

- SAT(e(Q[(x_i)_k])) is counting-reducible to #SAT and #P-hard for counting reductions.
- ► SAT($e(\mathbb{B}[(x_i)_k])$) is $\mathsf{FP}_{\parallel}^{\mathsf{NP}}$ -complete for metric reductions.

Encodings Epimorphisms

Finitely Generated Semirings

▶ Let $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$ be a semiring

Encodings Epimorphisms

Finitely Generated Semirings

- ▶ Let $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$ be a semiring
- The semiring generated by $S \subseteq R$ is

$$\langle S\rangle_{\mathcal{R}} := \bigcap \{ R' \subseteq R \mid S \subseteq R', (R', \oplus, \otimes, e_{\oplus}, e_{\otimes}) \text{ is a semiring} \}.$$

Finitely Generated Semirings

- ▶ Let $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$ be a semiring
- The semiring generated by $S \subseteq R$ is

$$\langle S
angle_{\mathcal{R}} := igcap \{ R' \subseteq R \mid S \subseteq R', (R', \oplus, \otimes, e_\oplus, e_\otimes) ext{ is a semiring} \}.$$

• \mathcal{R} is finitely generated if $\langle S \rangle_{\mathcal{R}} = R$ for $S = \{r_1, \ldots, r_n\}$

Finitely Generated Semirings

▶ Let $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$ be a semiring

• The semiring generated by $S \subseteq R$ is

$$\langle S
angle_{\mathcal{R}} := igcap \{ R' \subseteq R \mid S \subseteq R', (R', \oplus, \otimes, e_\oplus, e_\otimes) \text{ is a semiring} \}.$$

•
$$\mathcal{R}$$
 is finitely generated if $\langle S \rangle_{\mathcal{R}} = R$ for $S = \{r_1, \dots, r_n\}$

Proposition

If \mathcal{R} is finitely generated and commutative, then there is an epimorphism from $\mathbb{N}[(x_i)_n]$ to \mathcal{R} .

Finitely Generated Semirings

▶ Let $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$ be a semiring

• The semiring generated by $S \subseteq R$ is

$$\langle S
angle_{\mathcal{R}} := igcap \{ R' \subseteq R \mid S \subseteq R', (R', \oplus, \otimes, e_\oplus, e_\otimes) ext{ is a semiring} \}.$$

•
$$\mathcal{R}$$
 is finitely generated if $\langle S \rangle_{\mathcal{R}} = R$ for $S = \{r_1, \dots, r_n\}$

Proposition

If \mathcal{R} is finitely generated and commutative, then there is an epimorphism from $\mathbb{N}[(x_i)_n]$ to \mathcal{R} .

 $\hookrightarrow \mathcal{R}$ idempotent \to epimorphism from $\mathbb{B}[(x_i)_n]$

Finitely Generated Semirings

▶ Let $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$ be a semiring

• The semiring generated by $S \subseteq R$ is

 $\langle S \rangle_{\mathcal{R}} := \bigcap \{ R' \subseteq R \mid S \subseteq R', (R', \oplus, \otimes, e_{\oplus}, e_{\otimes}) \text{ is a semiring} \}.$

• \mathcal{R} is finitely generated if $\langle S \rangle_{\mathcal{R}} = R$ for $S = \{r_1, \ldots, r_n\}$

Proposition

If \mathcal{R} is finitely generated and commutative, then there is an epimorphism from $\mathbb{N}[(x_i)_n]$ to \mathcal{R} .

 $\hookrightarrow \mathcal{R}$ idempotent \to epimorphism from $\mathbb{B}[(x_i)_n]$

Solve SAT(\mathcal{R}) via SAT($\mathbb{N}[(x_i)_n]$) (resp. SAT($\mathbb{B}[(x_i)_n]$))

 $\begin{array}{c} & \text{Introduction} \\ & \text{General Completeness Result} \\ & \text{SAT}(\mathcal{R}) \text{ and Classical Complexity} \\ & \text{Conclusion} \end{array} \begin{array}{c} \text{Conclusion} \end{array}$

Conclusion

 SAT(R) and NP(R) are quantitative semiring counterparts to SAT and NP

- SAT(R) and NP(R) are quantitative semiring counterparts to SAT and NP
- Results suggest that the complexity strongly depends on the amount of information retained

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{General Completeness Result}\\ \mbox{SAT}(\mathcal{R}) \mbox{ and Classical Complexity}\\ \mbox{Conclusion} \end{array} \label{eq:conclusion}$

Conclusion

- SAT(R) and NP(R) are quantitative semiring counterparts to SAT and NP
- Results suggest that the complexity strongly depends on the amount of information retained
- ▶ In general SAT(\mathcal{R}) harder than #SAT (unless #P ⊆ FP/poly)

Conclusion

- SAT(R) and NP(R) are quantitative semiring counterparts to SAT and NP
- Results suggest that the complexity strongly depends on the amount of information retained
- ▶ In general SAT(\mathcal{R}) harder than #SAT (unless #P \subseteq FP/poly)
- ► For a broad class of commutative, finitely generated semirings SAT(*R*) can be reduced to #SAT (and is in FP_{||}^{NP} if *R* is also idempotent)

Conclusion

- 🔋 Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Solving# sat and bayesian inference with backtracking search. JAIR. 34:391-442. 2009.
- Stefano Bistarelli and Francesco Santini.

A common computational framework for semiring-based argumentation systems1, 2.

In ECAI, volume 215, page 131, 2010.

Stefano Bistarelli, Ugo Montanari, Francesca Rossi, Thomas Schiex, Gérard Verfaillie, and Hélene Fargier. Semiring-based csps and valued csps: Frameworks, properties, and comparison.

Constraints, 4(3):199–240, 1999.

Thomas Eiter and Rafael Kiesel.

Asp(ac): Answer set programming with algebraic constraints. arXiv preprint arXiv:2008.04008, 2020.

Conclusion

Todd J Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings.

In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 31–40. ACM, 2007.

Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. Algebraic model counting. Journal of Applied Logic, 22:46–62, 2017.