On the Complexity of Sum-of-Products Problems over Semirings

Thomas Eiter, Rafael Kiesel
Vienna University of Technology
funded by FWF project W1255-N23

Sum-of-Products [Bacchus et al., 2009]

- given a finite domain \mathcal{D} and
- functions $f_{i}: \mathcal{D}^{n_{i}} \rightarrow \mathbb{R}(i=1, \ldots, n)$
- compute

$$
\sum_{x_{1}, \ldots, X_{m} \in \mathcal{D}} \prod_{i=1}^{n} f_{i}\left(\vec{Y}_{i}\right)
$$

- where \vec{Y}_{i} is a vector of variables from $\left\{X_{1}, \ldots, X_{m}\right\}$.

Sum-of-Products over Semirings [Bacchus et al., 2009]

- More generally, over some semiring $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$:
- given a finite domain \mathcal{D} and
- functions $f_{i}: \mathcal{D}^{n_{i}} \rightarrow R(i=1, \ldots, n)$
- compute

$$
\bigoplus x_{1}, \ldots, x_{m} \in \mathcal{D} \bigotimes_{i=1}^{n} f_{i}\left(\vec{Y}_{i}\right)
$$

- where \vec{Y}_{i} is a vector of variables from $\left\{X_{1}, \ldots, X_{m}\right\}$.

Semirings

A semiring is an algebraic structure $\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$, s.t.

- $\left(R, \oplus, e_{\oplus}\right)$ is a commutative monoid with neutral element e_{\oplus}
- $\left(R, \otimes, e_{\otimes}\right)$ is a monoid with neutral element e_{\otimes}
- multiplication (\otimes) distributes over addition (\oplus)
- multiplication by e_{\oplus} annihilates R

Semiring Examples

Prominent examples are

$$
\left.\begin{array}{rlr}
\mathbb{B} & =(\{\perp, \top\}, \vee, \wedge, \perp, \top) & \text { boolean } \\
& \mathbb{N}=(\mathbb{N},+, \cdot, 0,1) & \text { natural } \mathrm{n} ᄂ \\
& \mathcal{R}_{\max } & =(\mathbb{R} \cup\{-\infty\}, \max ,+,-\infty, 0)
\end{array}\right) \text { max-plus }
$$

natural numbers

Semiring Examples

Prominent examples are
$\quad \mathbb{B}=(\{\perp, \top\}, \vee, \wedge, \perp, \top)$
$\bigvee_{a} \bigwedge_{0,1}^{m} C_{j}$
$\mathbb{N}=(\mathbb{N},+, \cdot, 0,1)$
boolean
natural numbers

- $\mathcal{R}_{\max }=(\mathbb{R} \cup\{-\infty\}, \max ,+,-\infty, 0)$ max-plus

Semiring Examples

Prominent examples are

$$
\begin{array}{rlrl}
& \mathbb{B}= & (\{\perp, \top\}, \vee, \wedge, \perp, \top) & \text { boolean } \\
& \bigvee^{a_{1}, \ldots, a_{n} \in\{0,1\}} \bigwedge_{j=1}^{m} C_{j} & & \text { natural nı } \\
& \mathbb{N}= & (\mathbb{N},+, \cdot, 0,1) \\
& \sum_{\substack{a_{1}, \ldots, a_{n} \in\{0,1\}}}^{m} \prod_{j=1}^{m} \mathbb{1}_{j} & \\
-\mathcal{R}_{\max }= & (\mathbb{R} \cup\{-\infty\}, \max ,+,-\infty, 0) & \text { max-plus }
\end{array}
$$

Semiring Examples

Prominent examples are

$$
\begin{array}{rlr}
\mathbb{B}= & (\{\perp, \top\}, \vee, \wedge, \perp, \top) & \text { boolean } \\
& \bigvee^{a_{1}, \ldots, a_{n} \in\{0,1\}} \bigwedge_{j=1}^{m} C_{j} & \text { natural nı } \\
& \sum_{\mathbb{N}=} \prod_{j}^{m} \mathbb{1}_{C_{j}} & \\
& (\mathbb{N},+, \cdot, 0,1) \\
\mathcal{R}_{1}, \ldots, a_{n} \in\{0,1\} \\
\max = & \left(\mathbb{R} \cup\{-\infty\}, \max _{j} \cup+,-\infty, 0\right) & \text { max-plus } \\
& \max _{a_{1}, \ldots, a_{n} \in\{0,1\}}^{m} \sum_{j=1}^{m} w_{j} \mathbb{1}_{C_{j}}
\end{array}
$$

Semirings in Computer Science

Semirings were successfully used to parameterize "calculation" in

- Semiring-based Constraint Satisfaction Problems
[Bistarelli et al., 1999]
- Provenance
[Green et al., 2007]
- Semiring-based Argumentation
[Bistarelli and Santini, 2010]
- Algebraic Model Counting
[Kimmig et al., 2017]
- Algebraic Constraints in Answer Set Programming
[Eiter and Kiesel, 2020]

Complexity?

Known results:

- Completeness results for some specific semirings
- \#P-complete over \mathbb{N}
- NP-complete over \mathbb{B}
- OptP-complete over $\mathcal{R}_{\text {max }}$

Complexity?

Known results:

- Completeness results for some specific semirings
- \#P-complete over \mathbb{N}
- NP-complete over \mathbb{B}
- OptP-complete over $\mathcal{R}_{\text {max }}$
- NP-hardness for idempotent semirings [Bistarelli et al., 1999]

Complexity?

Known results:

- Completeness results for some specific semirings
- \#P-complete over \mathbb{N}
- NP-complete over \mathbb{B}
- OptP-complete over $\mathcal{R}_{\text {max }}$
- NP-hardness for idempotent semirings [Bistarelli et al., 1999]

But:

- No results for semirings in general

Complexity?

Known results:

- Completeness results for some specific semirings
- \#P-complete over \mathbb{N}
- NP-complete over \mathbb{B}
- OptP-complete over $\mathcal{R}_{\text {max }}$
- NP-hardness for idempotent semirings [Bistarelli et al., 1999]

But:

- No results for semirings in general
- \#P already seems quite hard and there are semirings that are even harder than \mathbb{N}

Complexity?

Known results:

- Completeness results for some specific semirings
- \#P-complete over \mathbb{N}
- NP-complete over \mathbb{B}
- OptP-complete over $\mathcal{R}_{\max }$
- NP-hardness for idempotent semirings [Bistarelli et al., 1999]

But:

- No results for semirings in general
- \#P already seems quite hard and there are semirings that are even harder than \mathbb{N}
\hookrightarrow Need a more in-depth complexity analysis!

Weighted Propositional Formulas

- Let $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$ be a semiring
- Syntax

$$
\alpha::=k|v| \neg v|\alpha+\alpha| \alpha * \alpha,
$$

where $k \in R$ and v is a variable.

Weighted Propositional Formulas

- Let $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$ be a semiring
- Syntax

$$
\alpha::=k|v| \neg v|\alpha+\alpha| \alpha * \alpha,
$$

where $k \in R$ and v is a variable.

- Semantics of α given interpretation \mathcal{I}

$$
\begin{aligned}
\llbracket k \rrbracket_{\mathcal{R}}(\mathcal{I}) & =k(k \in R) \\
\llbracket \ell \rrbracket_{\mathcal{R}}(\mathcal{I}) & =\left\{\begin{array}{cc}
e_{\otimes} \quad & \ell \in \mathcal{I} \\
e_{\oplus} & \text { otherwise. }
\end{array} \quad(\ell \in\{v, \neg v\})\right. \\
\llbracket \alpha_{1}+\alpha_{2} \rrbracket_{\mathcal{R}}(\mathcal{I}) & =\llbracket \alpha_{1} \rrbracket_{\mathcal{R}}(\mathcal{I}) \oplus \llbracket \alpha_{2} \rrbracket_{\mathcal{R}}(\mathcal{I}) \\
\llbracket \alpha_{1} * \alpha_{2} \rrbracket_{\mathcal{R}}(\mathcal{I}) & =\llbracket \alpha_{1} \rrbracket_{\mathcal{R}}(\mathcal{I}) \otimes \llbracket \alpha_{2} \rrbracket_{\mathcal{R}}(\mathcal{I})
\end{aligned}
$$

SAT (\mathcal{R})

- Define $\operatorname{SAT}(\mathcal{R})$ as a generalization of SAT over semirings

SAT (\mathcal{R})

- Define $\operatorname{SAT}(\mathcal{R})$ as a generalization of SAT over semirings \hookrightarrow SAT should be equivalent to $\operatorname{SAT}(\mathbb{B})$

SAT (\mathcal{R})

- Define $\operatorname{SAT}(\mathcal{R})$ as a generalization of SAT over semirings \hookrightarrow SAT should be equivalent to $\operatorname{SAT}(\mathbb{B})$

SAT($\mathcal{R}):$
Given a weighted formula α over variables in \mathcal{V} compute

$$
\bigoplus_{\mathcal{I} \in \operatorname{lnt}(\mathcal{V})} \llbracket \alpha \rrbracket_{\mathcal{R}}(\mathcal{I})
$$

Semiring Turing Machines (SRTM)

- Aim: Capture $\operatorname{SAT}(\mathcal{R})$ but not more

Semiring Turing Machines (SRTM)

- Aim: Capture $\operatorname{SAT}(\mathcal{R})$ but not more
- Allow semiring values $r \in R$ on the tape

Semiring Turing Machines (SRTM)

- Aim: Capture $\operatorname{SAT}(\mathcal{R})$ but not more
- Allow semiring values $r \in R$ on the tape
- Use a weighted transition relation

$$
\delta \subseteq(Q \times(\Sigma \cup R)) \times(Q \times(\Sigma \cup R)) \times\{-1,1\} \times R^{1}
$$

[^0]
Semiring Turing Machines (SRTM)

- Aim: Capture $\operatorname{SAT}(\mathcal{R})$ but not more
- Allow semiring values $r \in R$ on the tape
- Use a weighted transition relation $\delta \subseteq(Q \times(\Sigma \cup R)) \times(Q \times(\Sigma \cup R)) \times\{-1,1\} \times R^{1}$
- For each $\left(\left(q_{1}, \sigma_{1}\right),\left(q_{2}, \sigma_{2}\right), e, r\right) \in \delta:$

1. cannot write or overwrite semiring values
($\sigma_{1} \in R$ or $\sigma_{2} \in R$ implies $\sigma_{1}=\sigma_{2}$)
${ }^{1} \delta$ may be infinite but is always finitely representable

Semiring Turing Machines (SRTM)

- Aim: Capture $\operatorname{SAT}(\mathcal{R})$ but not more
- Allow semiring values $r \in R$ on the tape
- Use a weighted transition relation $\delta \subseteq(Q \times(\Sigma \cup R)) \times(Q \times(\Sigma \cup R)) \times\{-1,1\} \times R^{1}$
- For each $\left(\left(q_{1}, \sigma_{1}\right),\left(q_{2}, \sigma_{2}\right), e, r\right) \in \delta:$

1. cannot write or overwrite semiring values
($\sigma_{1} \in R$ or $\sigma_{2} \in R$ implies $\sigma_{1}=\sigma_{2}$)
2. transition only with $r \in R^{\prime}$ or value under head ($r \in R^{\prime}$ or $r=\sigma_{1} \in R$)
[^1]
Semiring Turing Machines (SRTM)

- Aim: Capture $\operatorname{SAT}(\mathcal{R})$ but not more
- Allow semiring values $r \in R$ on the tape
- Use a weighted transition relation $\delta \subseteq(Q \times(\Sigma \cup R)) \times(Q \times(\Sigma \cup R)) \times\{-1,1\} \times R^{1}$
- For each $\left(\left(q_{1}, \sigma_{1}\right),\left(q_{2}, \sigma_{2}\right), e, r\right) \in \delta:$

1. cannot write or overwrite semiring values
($\sigma_{1} \in R$ or $\sigma_{2} \in R$ implies $\sigma_{1}=\sigma_{2}$)
2. transition only with $r \in R^{\prime}$ or value under head
$\left(r \in R^{\prime}\right.$ or $\left.r=\sigma_{1} \in R\right)$
3. cannot differentiate semiring values ($\sigma_{1} \in R$ implies that for all $\sigma_{1}^{\prime} \in R$ we have ($\left(q_{1}, \sigma_{1}^{\prime}\right)$, $\left.\left(q_{2}, \sigma_{1}^{\prime}\right), e, r^{\prime}\right) \in \delta$, where $r^{\prime}=\sigma_{1}^{\prime}$ if $r=\sigma_{1}$ and else $r^{\prime}=r$)
${ }^{1} \delta$ may be infinite but is always finitely representable

SRTM Output

- Let M be an SRTM and $c=(q, w, n)$ a configuration, where q is a state, w is the string on the tape and n is the head position

SRTM Output

- Let M be an SRTM and $c=(q, w, n)$ a configuration, where q is a state, w is the string on the tape and n is the head position
- The value $v(c)$ of c w.r.t. M is
- e_{\otimes}, if there are no possible transitions from c to another configuration

SRTM Output

- Let M be an SRTM and $c=(q, w, n)$ a configuration, where q is a state, w is the string on the tape and n is the head position
- The value $v(c)$ of c w.r.t. M is
- e_{\otimes}, if there are no possible transitions from c to another configuration
- $\bigoplus_{c \rightarrow c^{\prime}} r \otimes v\left(c^{\prime}\right)$, otherwise, where $c \xrightarrow{r} c^{\prime}$ denotes that M can transit from c to c^{\prime} with weight r

SRTM Output

- Let M be an SRTM and $c=(q, w, n)$ a configuration, where q is a state, w is the string on the tape and n is the head position
- The value $v(c)$ of c w.r.t. M is
- e_{\otimes}, if there are no possible transitions from c to another configuration
- $\bigoplus_{c \rightarrow c^{\prime}} r \otimes v\left(c^{\prime}\right)$, otherwise, where $c \xrightarrow{r} c^{\prime}$ denotes that M can transit from c to c^{\prime} with weight r
- The output is $v\left(c_{0}\right)$, the value of the initial configuration c_{0}.

$\mathrm{NP}(\mathcal{R})$

- $\mathrm{NP}(\mathcal{R})$ is the class of all functions computable in polynomial time by an SRTM over \mathcal{R}.

$\mathrm{NP}(\mathcal{R})$

- $\mathrm{NP}(\mathcal{R})$ is the class of all functions computable in polynomial time by an SRTM over \mathcal{R}.

Theorem
SAT (\mathcal{R}) is $\operatorname{NP}(\mathcal{R})$-complete with respect to polynomial transformations ${ }^{2}$, for every semiring \mathcal{R}.
${ }^{2}$ i.e. the same kind we use for NP-completeness

NP (\mathcal{R})-complete Problems

The following problems are $\operatorname{NP}(\mathcal{R})$-complete by reduction from SAT (\mathcal{R}) :

- Sum-of-Products
[Bacchus et al., 2009]
- Semiring-based Constraint Satisfaction Problems
[Bistarelli et al., 1999]
- Algebraic Model Counting
[Kimmig et al., 2017]
- Algebraic Constraint Evaluation
[Eiter and Kiesel, 2020]

Encodings

- For classical TMs we need to represent semiring values in a finite alphabet

Encodings

- For classical TMs we need to represent semiring values in a finite alphabet
- Let $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$ be a semiring
- An injective function $e: R \rightarrow\{0,1\}^{*}$ is an encoding function

Encodings

- For classical TMs we need to represent semiring values in a finite alphabet
- Let $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$ be a semiring
- An injective function $e: R \rightarrow\{0,1\}^{*}$ is an encoding function

Example

The binary representation $\operatorname{bin}(n)=b_{0} \ldots b_{m}$ such that $n=\sum_{i=1}^{m} b_{i} 2^{i}$ is an encoding function for the semiring \mathbb{N} of the natural numbers

The Encoding Matters!

- Binary encoding: Knapsack is NP-hard
- Unary encoding: Knapsack is in P

The Encoding Matters!

- Binary encoding: Knapsack is NP-hard
- Unary encoding: Knapsack is in P
- There is a semiring whose multiplication is undecidable or linear time depending on the encoding

Sources of Complexity

- Our intuition

Sources of Complexity

- Our intuition:

1. Encoding of the input

Sources of Complexity

- Our intuition:

1. Encoding of the input
2. Information retained by addition and multiplication

Sources of Complexity

- Our intuition:

1. Encoding of the input
2. Information retained by addition and multiplication

- $c_{1} \vee c_{2}$ over \mathbb{B} retains whether both c_{1}, c_{2} are 0

Sources of Complexity

- Our intuition:

1. Encoding of the input
2. Information retained by addition and multiplication

- $c_{1} \vee c_{2}$ over \mathbb{B} retains whether both c_{1}, c_{2} are 0
- $c_{1}+c_{2}$ over \mathbb{N} retains the sum of c_{1}, c_{2}

Sources of Complexity

- Our intuition:

1. Encoding of the input
2. Information retained by addition and multiplication

- $c_{1} \vee c_{2}$ over \mathbb{B} retains whether both c_{1}, c_{2} are 0
- $c_{1}+c_{2}$ over \mathbb{N} retains the sum of c_{1}, c_{2}
- $c_{1} x_{1}+c_{2} x_{2}$ over $\mathbb{N}\left[x_{1}, x_{2}\right]$ retains the values c_{1}, c_{2}

Sources of Complexity

- Our intuition:

1. Encoding of the input
2. Information retained by addition and multiplication

- $c_{1} \vee c_{2}$ over \mathbb{B} retains whether both c_{1}, c_{2} are 0
- $c_{1}+c_{2}$ over \mathbb{N} retains the sum of c_{1}, c_{2}
- $c_{1} x_{1}+c_{2} x_{2}$ over $\mathbb{N}\left[x_{1}, x_{2}\right]$ retains the values c_{1}, c_{2}
- 1. and 2. are orthogonal
\hookrightarrow we consider 2 .

Epimorphisms

- Let $\mathcal{R}_{i}=\left(R_{i}, \oplus_{i}, \otimes_{i}, e_{\oplus i}, e_{\otimes_{i}}\right), i=1,2$ be semirings

Epimorphisms

- Let $\mathcal{R}_{i}=\left(R_{i}, \oplus_{i}, \otimes_{i}, e_{\oplus i}, e_{\otimes_{i}}\right), i=1,2$ be semirings
- An epimorphism is a surjective function $f: R_{1} \rightarrow R_{2}$ such that for $\odot=\oplus, \otimes$

$$
f\left(r \odot_{1} r^{\prime}\right)=f(r) \odot_{2} f\left(r^{\prime}\right) \text { and } f\left(e_{\odot_{1}}\right)=e_{\odot_{2}} .
$$

Epimorphisms

- Let $\mathcal{R}_{i}=\left(R_{i}, \oplus_{i}, \otimes_{i}, e_{\oplus_{i}}, e_{\otimes_{i}}\right), i=1,2$ be semirings
- An epimorphism is a surjective function $f: R_{1} \rightarrow R_{2}$ such that for $\odot=\oplus, \otimes$

$$
f\left(r \odot_{1} r^{\prime}\right)=f(r) \odot_{2} f\left(r^{\prime}\right) \text { and } f\left(e_{\odot_{1}}\right)=e_{\odot_{2}}
$$

- If there is an epimorphism from \mathcal{R}_{1} to \mathcal{R}_{2}, then \mathcal{R}_{1} retains at least as much information as \mathcal{R}_{2}

Epimorphisms

- Let $\mathcal{R}_{i}=\left(R_{i}, \oplus_{i}, \otimes_{i}, e_{\oplus_{i}}, e_{\otimes_{i}}\right), i=1,2$ be semirings
- An epimorphism is a surjective function $f: R_{1} \rightarrow R_{2}$ such that for $\odot=\oplus, \otimes$

$$
f\left(r \odot_{1} r^{\prime}\right)=f(r) \odot_{2} f\left(r^{\prime}\right) \text { and } f\left(e_{\odot_{1}}\right)=e_{\odot_{2}}
$$

- If there is an epimorphism from \mathcal{R}_{1} to \mathcal{R}_{2}, then \mathcal{R}_{1} retains at least as much information as \mathcal{R}_{2}

Modulo 2

Natural Numbers

Epimorphism Theorem

Epimorphisms can be employed similarly to reductions

Epimorphism Theorem

Epimorphisms can be employed similarly to reductions
Theorem
Let $e_{i}\left(\mathcal{R}_{i}\right), i=1,2$ be two encoded semirings, such that

1. $\operatorname{SAT}\left(e_{1}\left(\mathcal{R}_{1}\right)\right)$ is in FPSpace(poly),
2. there exists a polynomial time computable epimorphism $f: e_{1}\left(R_{1}\right) \rightarrow e_{2}\left(R_{2}\right)$, and
3. for each $e_{2}\left(r_{2}\right) \in e\left(R_{2}\right)$ one can compute in polynomial time $e_{1}\left(r_{1}\right)$ s.t. $f\left(e_{1}\left(r_{1}\right)\right)=e_{2}\left(r_{2}\right)$ from $e_{2}\left(r_{2}\right)$.
Then $\operatorname{SAT}\left(e_{2}\left(\mathcal{R}_{2}\right)\right)$ is counting-reducible to $\operatorname{SAT}\left(e_{1}\left(\mathcal{R}_{1}\right)\right)$.

Epimorphism map

- Find membership results for high information retainers

Epimorphism map

- Find membership results for high information retainers

Epimorphism map

- Find membership results for high information retainers

- Note: $\mathbb{N}\left[\left(x_{i}\right)_{\infty}\right], \mathbb{B}\left[\left(x_{i}\right)_{\infty}\right]$ have epimorphisms to every commutative countable (resp. and idempotent) semiring

Negative Results

Theorem

Let $\mathcal{R}=\mathbb{N}\left[\left(x_{i}\right)_{\infty}\right]$ (resp. $\left.\mathcal{R}=\mathbb{B}\left[\left(x_{i}\right)_{\infty}\right]\right)$.
The following are equivalent:

1. There is an encoding function e for \mathcal{R} s.t.
1) $\left\|\llbracket \alpha \rrbracket_{\mathcal{R}}(\mathcal{I})\right\|_{e}$ is polynomial in the size of α, \mathcal{I},
2) we can extract the coefficient of $x_{i_{1}}^{j_{1}} \ldots x_{i_{n}}^{j_{n}}$ from $e(r)$ in polynomial time in $\|r\|_{e}$, and
3) $\left\|x_{i}\right\|_{e}$ is polynomial in i,
2. $\# P \subseteq F P /$ poly (resp. $N P \subseteq P /$ poly $)$.

Negative Results

Theorem

Let $\mathcal{R}=\mathbb{N}\left[\left(x_{i}\right)_{\infty}\right]$ (resp. $\left.\mathcal{R}=\mathbb{B}\left[\left(x_{i}\right)_{\infty}\right]\right)$.
The following are equivalent:

1. There is an encoding function e for \mathcal{R} s.t.
1) $\left\|\llbracket \alpha \rrbracket_{\mathcal{R}}(\mathcal{I})\right\|_{e}$ is polynomial in the size of α, \mathcal{I},
2) we can extract the coefficient of $x_{i_{1}}^{j_{1}} \ldots x_{i_{n}}^{j_{n}}$ from $e(r)$ in polynomial time in $\|r\|_{e}$, and
3) $\left\|x_{i}\right\|_{e}$ is polynomial in i,
2. $\# P \subseteq F P /$ poly (resp. $N P \subseteq P /$ poly $)$.

- link to open complexity theoretic questions!

Positive Results

Theorem
Let e be the encoding function that represents exponents in unary and coefficients in binary. Then

- $\operatorname{SAT}\left(e\left(\mathbb{Q}\left[\left(x_{i}\right)_{k}\right]\right)\right)$ is counting-reducible to \#SAT and \#P-hard for counting reductions.
- $\operatorname{SAT}\left(e\left(\mathbb{B}\left[\left(x_{i}\right)_{k}\right]\right)\right)$ is $\mathrm{FP}_{\|}^{\mathrm{NP}}$-complete for metric reductions.

Finitely Generated Semirings

- Let $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$ be a semiring

Finitely Generated Semirings

- Let $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$ be a semiring
- The semiring generated by $S \subseteq R$ is

$$
\langle S\rangle_{\mathcal{R}}:=\bigcap\left\{R^{\prime} \subseteq R \mid S \subseteq R^{\prime},\left(R^{\prime}, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right) \text { is a semiring }\right\} .
$$

Finitely Generated Semirings

- Let $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$ be a semiring
- The semiring generated by $S \subseteq R$ is

$$
\langle S\rangle_{\mathcal{R}}:=\bigcap\left\{R^{\prime} \subseteq R \mid S \subseteq R^{\prime},\left(R^{\prime}, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right) \text { is a semiring }\right\} .
$$

- \mathcal{R} is finitely generated if $\langle S\rangle_{\mathcal{R}}=R$ for $S=\left\{r_{1}, \ldots, r_{n}\right\}$

Finitely Generated Semirings

- Let $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$ be a semiring
- The semiring generated by $S \subseteq R$ is

$$
\langle S\rangle_{\mathcal{R}}:=\bigcap\left\{R^{\prime} \subseteq R \mid S \subseteq R^{\prime},\left(R^{\prime}, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right) \text { is a semiring }\right\} .
$$

- \mathcal{R} is finitely generated if $\langle S\rangle_{\mathcal{R}}=R$ for $S=\left\{r_{1}, \ldots, r_{n}\right\}$

Proposition

If \mathcal{R} is finitely generated and commutative, then there is an epimorphism from $\mathbb{N}\left[\left(x_{i}\right)_{n}\right]$ to \mathcal{R}.

Finitely Generated Semirings

- Let $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$ be a semiring
- The semiring generated by $S \subseteq R$ is

$$
\langle S\rangle_{\mathcal{R}}:=\bigcap\left\{R^{\prime} \subseteq R \mid S \subseteq R^{\prime},\left(R^{\prime}, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right) \text { is a semiring }\right\} .
$$

- \mathcal{R} is finitely generated if $\langle S\rangle_{\mathcal{R}}=R$ for $S=\left\{r_{1}, \ldots, r_{n}\right\}$

Proposition

If \mathcal{R} is finitely generated and commutative, then there is an epimorphism from $\mathbb{N}\left[\left(x_{i}\right)_{n}\right]$ to \mathcal{R}.
$\hookrightarrow \mathcal{R}$ idempotent \rightarrow epimorphism from $\mathbb{B}\left[\left(x_{i}\right)_{n}\right]$

Finitely Generated Semirings

- Let $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$ be a semiring
- The semiring generated by $S \subseteq R$ is

$$
\langle S\rangle_{\mathcal{R}}:=\bigcap\left\{R^{\prime} \subseteq R \mid S \subseteq R^{\prime},\left(R^{\prime}, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right) \text { is a semiring }\right\} .
$$

- \mathcal{R} is finitely generated if $\langle S\rangle_{\mathcal{R}}=R$ for $S=\left\{r_{1}, \ldots, r_{n}\right\}$

Proposition

If \mathcal{R} is finitely generated and commutative, then there is an epimorphism from $\mathbb{N}\left[\left(x_{i}\right)_{n}\right]$ to \mathcal{R}.
$\hookrightarrow \mathcal{R}$ idempotent \rightarrow epimorphism from $\mathbb{B}\left[\left(x_{i}\right)_{n}\right]$

- Solve $\operatorname{SAT}(\mathcal{R})$ via $\operatorname{SAT}\left(\mathbb{N}\left[\left(x_{i}\right)_{n}\right]\right)$ (resp. $\left.\operatorname{SAT}\left(\mathbb{B}\left[\left(x_{i}\right)_{n}\right]\right)\right)$

Conclusion

- $\operatorname{SAT}(\mathcal{R})$ and $\mathrm{NP}(\mathcal{R})$ are quantitative semiring counterparts to SAT and NP

Conclusion

- $\operatorname{SAT}(\mathcal{R})$ and $\mathrm{NP}(\mathcal{R})$ are quantitative semiring counterparts to SAT and NP
- Results suggest that the complexity strongly depends on the amount of information retained

Conclusion

- $\operatorname{SAT}(\mathcal{R})$ and $\mathrm{NP}(\mathcal{R})$ are quantitative semiring counterparts to SAT and NP
- Results suggest that the complexity strongly depends on the amount of information retained
- In general $\operatorname{SAT}(\mathcal{R})$ harder than \#SAT (unless \#P $\subseteq \mathrm{FP} /$ poly)

Conclusion

- $\operatorname{SAT}(\mathcal{R})$ and $\mathrm{NP}(\mathcal{R})$ are quantitative semiring counterparts to SAT and NP
- Results suggest that the complexity strongly depends on the amount of information retained
- In general $\operatorname{SAT}(\mathcal{R})$ harder than \#SAT (unless \#P $\subseteq \mathrm{FP} /$ poly)
- For a broad class of commutative, finitely generated semirings $\operatorname{SAT}(\mathcal{R})$ can be reduced to \#SAT (and is in $\mathrm{FP}_{\|}^{\mathrm{NP}}$ if \mathcal{R} is also idempotent)

Eahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Solving\# sat and bayesian inference with backtracking search. JAIR, 34:391-442, 2009.

Rtefano Bistarelli and Francesco Santini.
A common computational framework for semiring-based argumentation systems1, 2.
In ECAI, volume 215, page 131, 2010.
围 Stefano Bistarelli, Ugo Montanari, Francesca Rossi, Thomas Schiex, Gérard Verfaillie, and Hélene Fargier.
Semiring-based csps and valued csps: Frameworks, properties, and comparison.
Constraints, 4(3):199-240, 1999.
围 Thomas Eiter and Rafael Kiesel.
Asp(ac): Answer set programming with algebraic constraints. arXiv preprint arXiv:2008.04008, 2020.

目 Todd J Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings.
In Proceedings of the twenty-sixth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 31-40. ACM, 2007.

R Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. Algebraic model counting. Journal of Applied Logic, 22:46-62, 2017.

[^0]: ${ }^{1} \delta$ may be infinite but is always finitely representable

[^1]: ${ }^{1} \delta$ may be infinite but is always finitely representable

