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Introduction

Sum-of-Products Problem

Motivation

Sum-of-Products [Bacchus et al., 2009]

> given a finite domain D and
» functions f; : D" - R (i=1,...,n)

> compute
n
> T,
Xi,... Xm€D i=1
> where Y; is a vector of variables from {Xy,..., Xm}.
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Introduction

Sum-of-Products Problem

Motivation

Sum-of-Products over Semirings [Bacchus et al., 2009]

» More generally, over some semiring R = (R, ®, ®, eg, €3):
> given a finite domain D and
» functions f; : D" — R (i=1,...,n)
> compute
P, xmep @I fi(Vi),
> where Y; is a vector of variables from {Xi,..., Xm}.
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Introduction

Sum-of-Products Problem

Motivation

Semirings

A semiring is an algebraic structure (R, ®, ®, eg, €g), s.t.
» (R, ®, eq) is a commutative monoid with neutral element eg
» (R,®,eg) is a monoid with neutral element eg
» multiplication (®) distributes over addition (&)
» multiplication by eg annihilates R
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Semiring Examples
Prominent examples are

> B= ({L, T}V,A,L,T) boolean

V  AG
a1,...,an€{0,1} j=1
> N= (N’+7'707 1) natural numbers

m

>, 1l
a1,...,an€{0,1} j=1
> Rmax = (RU{—00}, max,+,—00,0) max-plus
m
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Introduction

Sum-of-Products Problem
Motivation

Semirings in Computer Science

Semirings were successfully used to parameterize “calculation” in

» Semiring-based Constraint Satisfaction Problems
[Bistarelli et al., 1999]

» Provenance
[Green et al., 2007]

» Semiring-based Argumentation
[Bistarelli and Santini, 2010]

» Algebraic Model Counting
[Kimmig et al., 2017]

Algebraic Constraints in Answer Set Programming
[Eiter and Kiesel, 2020]

v
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Motivation

Complexity?

Known results:
» Completeness results for some specific semirings
» #P-complete over N

» NP-complete over B
» OptP-complete over Rmax
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Introduction
Sum-of-Products Problem

Motivation

Complexity?

Known results:
» Completeness results for some specific semirings
» #P-complete over N

» NP-complete over B
» OptP-complete over Rax
» NP-hardness for idempotent semirings [Bistarelli et al., 1999]
But:
» No results for semirings in general

» #P already seems quite hard and there are semirings that are
even harder than N

< Need a more in-depth complexity analysis!

Thomas Eiter, Rafael Kiesel 5/21
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P Semiring Turing Machines
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Weighted Propositional Formulas
> Let R =(R,®,®, eg, ez) be a semiring
> Syntax
az=k|v|-v|a+a|ax*a,

where k € R and v is a variable.
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SAT(R)

General Completeness Result e . .
P Semiring Turing Machines

NP(R)

Weighted Propositional Formulas
> Let R =(R,®,®, eg, ez) be a semiring
> Syntax
az=k|v|-v|a+a|ax*a,
where k € R and v is a variable.

» Semantics of « given interpretation Z
[KIr(Z) = k (k€ R)
1@ = { & peraize, (€ )
[a1 + a2]r(T) = [a1]=(T)®[o2]= (T)
[a1 x a2]=(Z) = [ea]r(Z)®[a2]R(T)
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General Completeness Result

uring Machines

SAT(R)

» Define SAT(R) as a generalization of SAT over semirings
< SAT should be equivalent to SAT(B)

SAT(R):

Given a weighted formula a over variables in V compute

D =)

Zelnt(V)

Thomas Eiter, Rafael Kiesel 7/21
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SAT(R)

General Completeness Result Sttt T Medines

NP(R)

Semiring Turing Machines (SRTM)

» Aim: Capture SAT(R) but not more
» Allow semiring values r € R on the tape
> Use a weighted transition relation
SC(@*x(XUR)) x(Q@x(ZUR)) x {-1,1}xR?
» For each ((q1,01),(g2,02),e,r) €0 :
1. cannot write or overwrite semiring values
(01 € R or 02 € R implies 01 = 0)
2. transition only with r € R’ or value under head
(reRorr=01€R)

3. cannot differentiate semiring values
(o1 € R implies that for all o] € R we have ((q1,07),
(g2,01),e,r') €6, where r' =07 if r=07 and else r' =r)

15 may be infinite but is always finitely representable

Thomas Eiter, Rafael Kiesel 8/21



SAT(R)
General Completeness Result Sttt T Medines

NP(R)

SRTM Output

» Let M be an SRTM and
¢ = (g, w, n) a configuration,
where ¢ is a state, w is the string
on the tape and n is the head

position / \

2 2
/ \
€o.1 €0.0
3 1
l l
€0.1.0 €0.0.0
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Semiring Turing Machines
NP(R)

General Completeness Result

SRTM Output

» Let M be an SRTM and
¢ = (g, w, n) a configuration,
where ¢ is a state, w is the string
on the tape and n is the head

position / \

» The value v(c) of c w.rt. M is 2 2
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transitions from c¢ to another Co.1 €0.0
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General Completeness Result Sttt T Medines

NP(R)

SRTM Output

» Let M be an SRTM and
¢ = (g, w, n) a configuration,
where ¢ is a state, w is the string

on the tape and n is the head G 2-34+2-1
position / \
» The value v(c) of c w.rt. M is 2 2
> ey, if there are no possible / \,
transitions from c¢ to another €1-3-1 C.0-1-1
configuration ‘ ‘
> D .. rev(c’), otherwise, where 3 1
¢ 5 ¢’ denotes that M can l l

transit from ¢ to ¢’ with weight r
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Thomas Eiter, Rafael Kiesel 9/21



SAT(R)

General Completeness Result Sttt T Medines

NP(R)

SRTM Output

» Let M be an SRTM and
¢ = (g, w, n) a configuration,
where ¢ is a state, w is the string

on the tape and n is the head G- 2-342-1
position / \
» The value v(c) of c w.rt. M is 2 2
> ey, if there are no possible / \,
transitions from c¢ to another €1-3-1 C.0-1-1
configuration
> D .. rev(c’), otherwise, where 3 1
¢ 5 ¢’ denotes that M can l l

transit from ¢ to ¢’ with weight r
& .10 1 .00 1

» The output is v(cp), the value of
the initial configuration cp.
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SAT(R)

General Completeness Result hd . .
P Semiring Turing Machines

NP(R)

NP(R)

» NP(R) is the class of all functions computable in polynomial
time by an SRTM over R.
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SAT(R)

General Completeness Result hd . .
P Semiring Turing Machines

NP(R)

NP(R)

» NP(R) is the class of all functions computable in polynomial
time by an SRTM over R.

Theorem
SAT(R) is NP(R)-complete with respect to polynomial
transformations?, for every semiring R.

2j.e. the same kind we use for NP-completeness
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SAT(R)

General Completeness Result hd . .
P Semiring Turing Machines

NP(R)

NP(R)-complete Problems

The following problems are NP(R)-complete by reduction from
SAT(R):

» Sum-of-Products
[Bacchus et al., 2009]

» Semiring-based Constraint Satisfaction Problems
[Bistarelli et al., 1999]

» Algebraic Model Counting
[Kimmig et al., 2017]

» Algebraic Constraint Evaluation
[Eiter and Kiesel, 2020]
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Encodings

SAT(R) and Classical Complexity Epimorphisms

Encodings

» For classical TMs we need to represent semiring values in a
finite alphabet

» Let R = (R, D, ®, eq, €g) be a semiring

» An injective function e : R — {0,1}* is an encoding function

Example

The binary representation bin(n) = by . .. by, such that
n=>"",b;2" is an encoding function for the semiring N of the

natural numbers

Thomas Eiter, Rafael Kiesel 12 /21
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Encodings

SAT(R) and Classical Complexity Epimorphisms

The Encoding Matters!

» Binary encoding: Knapsack is NP-hard
» Unary encoding: Knapsack is in P

» There is a semiring whose multiplication is undecidable or
linear time depending on the encoding

Thomas Eiter, Rafael Kiesel 13 /21



Encodings

SAT(R) and Classical Complexity Epimorphisms

Sources of Complexity

» Our intuition

Thomas Eiter, Rafael Kiesel 14 /21



Encodings

SAT(R) and Classical Complexity Epimorphisms

Sources of Complexity

» Our intuition:
1. Encoding of the input

Thomas Eiter, Rafael Kiesel 14 /21



Encodings

SAT(R) and Classical Complexity Epimorphisms

Sources of Complexity

» Our intuition:
1. Encoding of the input

2. Information retained by addition and multiplication

Thomas Eiter, Rafael Kiesel 14 /21



Encodings

SAT(R) and Classical Complexity Epimorphisms

Sources of Complexity

» Our intuition:
1. Encoding of the input

2. Information retained by addition and multiplication
> 1V ¢ over B retains whether both ¢1, ¢ are 0

Thomas Eiter, Rafael Kiesel 14 /21



Encodings

SAT(R) and Classical Complexity Epimorphisms

Sources of Complexity

» Our intuition:
1. Encoding of the input

2. Information retained by addition and multiplication
> 1V ¢ over B retains whether both ¢1, ¢ are 0

» ¢ + ¢ over N retains the sum of ¢, ¢

Thomas Eiter, Rafael Kiesel 14 /21



Encodings

SAT(R) and Classical Complexity Epimorphisms

Sources of Complexity

» Our intuition:
1. Encoding of the input

2. Information retained by addition and multiplication
> 1V ¢ over B retains whether both ¢1, ¢ are 0

» ¢ + ¢ over N retains the sum of ¢, ¢

> c1x1 + cax2 over N[xi, x| retains the values ¢, &

Thomas Eiter, Rafael Kiesel 14 /21



Encodings

SAT(R) and Classical Complexity Epimorphisms

Sources of Complexity

» Our intuition:
1. Encoding of the input

2. Information retained by addition and multiplication
> 1V ¢ over B retains whether both ¢1, ¢ are 0

» ¢ + ¢ over N retains the sum of ¢, ¢

> c1x1 + cax2 over N[xi, x| retains the values ¢, &

» 1. and 2. are orthogonal
< we consider 2.
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Encodings

SAT(R) and Classical Complexity Epimorphisms

Epimorphisms

> Let R; = (Ri,®j, ®i, s, €g,;), | = 1,2 be semirings
» An epimorphism is a surjective function f : Ry — R, such that
for© =@, ®

f(rorr’)=f(r)© f(r') and f(en,) = es,-

> If there is an epimorphism from R; to R,, then R retains at
least as much information as R»

AT TS

Modulo 2

- Natural Numbers
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SAT(R) and Classical Complexity Epimorphisms

Epimorphism Theorem

Epimorphisms can be employed similarly to reductions

Theorem

Let e;(R;),i = 1,2 be two encoded semirings, such that
1. SAT(e1(R1)) is in FPSpace(poly),

2. there exists a polynomial time computable epimorphism
f:e(R)— e(R2), and

3. for each ex(r2) € e(R2) one can compute in polynomial time
ei(r) s.t. f(ei(n)) = ex(r2) from ex(r2).
Then SAT (e2(R2)) is counting-reducible to SAT (e1(R1)).
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Encodings

SAT(R) and Classical Complexity Epimorphisms

Epimorphism map
» Find membership results for high information retainers

()N N
/N B[(

Q N[(X,')k] i
\1 T
i Rmax Rmin
N N/
| =
L

» Note: N[(xi)oo], B[(Xi)oo] have epimorphisms to every
commutative countable (resp. and idempotent) semiring
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Encodings

SAT(R) and Classical Complexity Epimorphisms

Negative Results

Theorem
Let R = N[(xi)oo] (resp. R = B[(xi)oo])-
The following are equivalent:
1. There is an encoding function e for R s.t.

1) I[elr (D) is polynomial in the size of o, Z,

2) we can extract the coefficient ofx,’:xf from e(r) in
polynomial time in ||r||e, and

3) |Ixille is polynomial in i,

2. #P C FP/poly (resp. NP C P/poly).
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Encodings

SAT(R) and Classical Complexity Epimorphisms

Negative Results

Theorem
Let R = N[(xi)oo] (resp. R = B[(xi)oo])-
The following are equivalent:
1. There is an encoding function e for R s.t.

1) I[elr (D) is polynomial in the size of o, Z,

2) we can extract the coefficient ofx,’:xf from e(r) in
polynomial time in ||r||e, and

3) |Ixille is polynomial in i,

2. #P C FP/poly (resp. NP C P/poly).

» link to open complexity theoretic questions!
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Encodings

SAT(R) and Classical Complexity Epimorphisms

Positive Results

Theorem
Let e be the encoding function that represents exponents in unary
and coefficients in binary. Then

> SAT(e(Q[(xi)k])) is counting-reducible to #SAT and #P-hard
for counting reductions.

> SAT(e(B[(xi)k])) is FPWP—complete for metric reductions.

Thomas Eiter, Rafael Kiesel 19 /21
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Encodings

SAT(R) and Classical Complexity Epimorphisms

Finitely Generated Semirings

> Let R =(R,®,®, eg, €g) be a semiring
» The semiring generated by S C R is

(S)r = ﬂ{R' CR|SCR,(R,® ®,eq, ez) is a semiring}.
» R is finitely generated if (S)g = Rfor S={n,...,r}

Proposition

If R is finitely generated and commutative, then there is an
epimorphism from N[(x;),] to R.

— R idempotent — epimorphism from B[(x;),]

» Solve SAT(R) via SAT(N[(x;)n]) (resp. SAT(B[(x:)n]))

Thomas Eiter, Rafael Kiesel 20 /21
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Conclusion

Conclusion

Conclusion

» SAT(R) and NP(R) are quantitative semiring counterparts to
SAT and NP

> Results suggest that the complexity strongly depends on the
amount of information retained

» In general SAT(R) harder than #SAT (unless #P C FP/poly)

» For a broad class of commutative, finitely generated semirings
SAT(R) can be reduced to #SAT (and is in FPnIP if R is also
idempotent)

Thomas Eiter, Rafael Kiesel 21 /21
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