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Introduction
General Completeness Result

SAT(R) and Classical Complexity
Conclusion

Sum-of-Products Problem
Motivation

Sum-of-Products [Bacchus et al., 2009]

I More generally, over some semiring R = (R,⊕,⊗, e⊕, e⊗):

I given a finite domain D and
I functions fi : Dni → R (i = 1, . . . , n)

I compute

∑
X1,...,Xm∈D

n∏
i=1

fi ( ~Yi ),

I where ~Yi is a vector of variables from {X1, . . . ,Xm}.
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Motivation

Semirings

A semiring is an algebraic structure (R,⊕,⊗, e⊕, e⊗), s.t.
I (R,⊕, e⊕) is a commutative monoid with neutral element e⊕
I (R,⊗, e⊗) is a monoid with neutral element e⊗
I multiplication (⊗) distributes over addition (⊕)
I multiplication by e⊕ annihilates R
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Semiring Examples

Prominent examples are

� B = ({⊥,>},∨,∧,⊥,>) boolean

∨
a1,...,an∈{0,1}

m∧
j=1

Cj

� N = (N,+, ·, 0, 1) natural numbers

∑
a1,...,an∈{0,1}

m∏
j=1

1Cj

� Rmax = (R ∪ {−∞},max,+,−∞, 0) max-plus

max
a1,...,an∈{0,1}

m∑
j=1

wj1Cj
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Semirings in Computer Science

Semirings were successfully used to parameterize “calculation” in

I Semiring-based Constraint Satisfaction Problems
[Bistarelli et al., 1999]

I Provenance
[Green et al., 2007]

I Semiring-based Argumentation
[Bistarelli and Santini, 2010]

I Algebraic Model Counting
[Kimmig et al., 2017]

I Algebraic Constraints in Answer Set Programming
[Eiter and Kiesel, 2020]
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Complexity?

Known results:
I Completeness results for some specific semirings

I #P-complete over N
I NP-complete over B
I OptP-complete over Rmax

I NP-hardness for idempotent semirings [Bistarelli et al., 1999]

I No results for semirings in general
I #P already seems quite hard and there are semirings that are

even harder than N
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I #P-complete over N
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I OptP-complete over Rmax

I NP-hardness for idempotent semirings [Bistarelli et al., 1999]

But:
I No results for semirings in general
I #P already seems quite hard and there are semirings that are

even harder than N
↪→ Need a more in-depth complexity analysis!
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SAT(R)
Semiring Turing Machines
NP(R)

Weighted Propositional Formulas
I Let R = (R,⊕,⊗, e⊕, e⊗) be a semiring

I Syntax

α ::= k | v | ¬v | α+ α | α ∗ α,

where k ∈ R and v is a variable.

I Semantics of α given interpretation I

JkKR(I) = k (k ∈ R)

J`KR(I) =

{
e⊗ ` ∈ I
e⊕ otherwise.

(` ∈ {v ,¬v})

Jα1 + α2KR(I) = Jα1KR(I)⊕Jα2KR(I)

Jα1 ∗ α2KR(I) = Jα1KR(I)⊗Jα2KR(I)
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Semiring Turing Machines (SRTM)

I Aim: Capture SAT(R) but not more

I Allow semiring values r ∈ R on the tape
I Use a weighted transition relation
δ ⊆ (Q × (Σ ∪ R))× (Q × (Σ ∪ R))× {−1, 1}×R1

I For each ((q1, σ1), (q2, σ2), e, r) ∈ δ :

1. cannot write or overwrite semiring values
(σ1 ∈ R or σ2 ∈ R implies σ1 = σ2)

2. transition only with r ∈ R ′ or value under head
(r ∈ R ′ or r = σ1 ∈ R)

3. cannot differentiate semiring values
(σ1 ∈ R implies that for all σ′1 ∈ R we have ((q1, σ

′
1),

(q2, σ
′
1), e, r ′) ∈ δ, where r ′ = σ′1 if r = σ1 and else r ′ = r)

1δ may be infinite but is always finitely representable

Thomas Eiter, Rafael Kiesel 8 / 21
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SRTM Output

I Let M be an SRTM and
c = (q,w , n) a configuration,
where q is a state, w is the string
on the tape and n is the head
position

I The value v(c) of c w.r.t. M is
I e⊗, if there are no possible

transitions from c to another
configuration

I
⊕

c
r→c′

r⊗v(c ′), otherwise, where
c

r→ c ′ denotes that M can
transit from c to c ′ with weight r

I The output is v(c0), the value of
the initial configuration c0.

c0

c0.0c0.1

c0.0.0c0.1.0

22

13

1 1

3 · 1 1 · 1

2 · 3 + 2 · 1
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NP(R)

I NP(R) is the class of all functions computable in polynomial
time by an SRTM over R.

Theorem
SAT(R) is NP(R)-complete with respect to polynomial
transformations2, for every semiring R.

2i.e. the same kind we use for NP-completeness
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NP(R)-complete Problems

The following problems are NP(R)-complete by reduction from
SAT(R):

I Sum-of-Products
[Bacchus et al., 2009]

I Semiring-based Constraint Satisfaction Problems
[Bistarelli et al., 1999]

I Algebraic Model Counting
[Kimmig et al., 2017]

I Algebraic Constraint Evaluation
[Eiter and Kiesel, 2020]
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Encodings

I For classical TMs we need to represent semiring values in a
finite alphabet

I Let R = (R,⊕, ⊗, e⊕, e⊗) be a semiring
I An injective function e : R → {0, 1}∗ is an encoding function

Example
The binary representation bin(n) = b0 . . . bm such that
n =

∑m
i=1 bi2

i is an encoding function for the semiring N of the
natural numbers
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The Encoding Matters!

I Binary encoding: Knapsack is NP-hard
I Unary encoding: Knapsack is in P

I There is a semiring whose multiplication is undecidable or
linear time depending on the encoding
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Encodings
Epimorphisms

Sources of Complexity

I Our intuition

1. Encoding of the input

2. Information retained by addition and multiplication

I c1 ∨ c2 over B retains whether both c1, c2 are 0

I c1 + c2 over N retains the sum of c1, c2

I c1x1 + c2x2 over N[x1, x2] retains the values c1, c2

I 1. and 2. are orthogonal
↪→ we consider 2.
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I Let Ri = (Ri ,⊕i ,⊗i , e⊕i , e⊗i ), i = 1, 2 be semirings

I An epimorphism is a surjective function f : R1 → R2 such that
for � = ⊕,⊗

f (r �1 r
′) = f (r)�2 f (r ′) and f (e�1) = e�2 .

I If there is an epimorphism from R1 to R2, then R1 retains at
least as much information as R2

1 3 5 . . . 0 2 4 . . .
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Epimorphism Theorem

Epimorphisms can be employed similarly to reductions

Theorem
Let ei (Ri ), i = 1, 2 be two encoded semirings, such that
1. SAT(e1(R1)) is in FPSpace(poly),

2. there exists a polynomial time computable epimorphism
f : e1(R1)→ e2(R2), and

3. for each e2(r2) ∈ e(R2) one can compute in polynomial time
e1(r1) s.t. f (e1(r1)) = e2(r2) from e2(r2).

Then SAT(e2(R2)) is counting-reducible to SAT(e1(R1)).
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I Find membership results for high information retainers

N[(xi )∞]

Q N[(xi )k ]

B[(xi )∞]

Z
B[(xi )k ]

N

Zk

Rmax Rmin

B

I Note: N[(xi )∞],B[(xi )∞] have epimorphisms to every
commutative countable (resp. and idempotent) semiring
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Negative Results

Theorem
Let R = N[(xi )∞] (resp. R = B[(xi )∞]).
The following are equivalent:
1. There is an encoding function e for R s.t.

1) ‖JαKR(I)‖e is polynomial in the size of α, I,

2) we can extract the coefficient of x j1i1 ...x
jn
in

from e(r) in
polynomial time in ‖r‖e , and

3) ‖xi‖e is polynomial in i ,

2. #P ⊆ FP/poly (resp. NP ⊆ P/poly).

I link to open complexity theoretic questions!
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Positive Results

Theorem
Let e be the encoding function that represents exponents in unary
and coefficients in binary. Then
I SAT(e(Q[(xi )k ])) is counting-reducible to #SAT and #P-hard

for counting reductions.
I SAT(e(B[(xi )k ])) is FPNP

‖ -complete for metric reductions.
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Finitely Generated Semirings

I Let R = (R,⊕,⊗, e⊕, e⊗) be a semiring

I The semiring generated by S ⊆ R is

〈S〉R :=
⋂
{R ′ ⊆ R | S ⊆ R ′, (R ′,⊕,⊗, e⊕, e⊗) is a semiring}.

I R is finitely generated if 〈S〉R = R for S = {r1, . . . , rn}

Proposition
If R is finitely generated and commutative, then there is an
epimorphism from N[(xi )n] to R.

↪→ R idempotent → epimorphism from B[(xi )n]

I Solve SAT(R) via SAT(N[(xi )n]) (resp. SAT(B[(xi )n]))

Thomas Eiter, Rafael Kiesel 20 / 21
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Conclusion

I SAT(R) and NP(R) are quantitative semiring counterparts to
SAT and NP

I Results suggest that the complexity strongly depends on the
amount of information retained

I In general SAT(R) harder than #SAT (unless #P ⊆ FP/poly)

I For a broad class of commutative, finitely generated semirings
SAT(R) can be reduced to #SAT (and is in FPNP

‖ if R is also
idempotent)
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