Der Wissenschaftsfonds.

On the Complexity of Sum-Of-Products Problems over Semirings
Thomas Eiter \& Rafael Kiesel
Vienna University of Technology, Vienna, Austria
\{thomas.eiter, rafael.kiesel\}@tuwien.ac.at
funded by FWF project W1255-N23
Sum-Of-Products [1]

- finite domain \mathcal{D}
- compute

$$
\begin{equation*}
\sum_{x, \in \in=1} \prod_{1}=(\gamma) \tag{1}
\end{equation*}
$$

where \vec{Y}_{i} is a vector of variables from $\left\{X_{1}, \ldots, X_{m}\right\}$

- The "sum" and the "product" do not need to be the usual addition and multiplication over the reals, but can be any addition \oplus and multiplication \otimes from a semiring $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$.
Semirings
A semiring $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$ consists of a nonempty set R equipped with two binary operations \oplus and \otimes, called addition and multiplication, s.t. $\begin{aligned}(a \oplus b) \oplus c & =a \oplus(b \oplus c)(a \otimes b) \otimes c \\ e_{\oplus} \oplus a & =a \otimes(b \otimes c) \\ a \oplus e_{\oplus} \quad e_{\otimes} \otimes a & =a=a \otimes e_{\otimes}\end{aligned}$ $e_{\oplus} \oplus a=a=a \oplus$
$a \oplus b=b \oplus a$
$a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)$ $(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)$ $e_{\oplus} \otimes a=e_{\oplus}=a \otimes e_{\oplus}$
A semiring is commutative, if (R, \otimes) is commutative, and is idempotent, if $\forall r \in R: r \oplus r=r$. Well-known Semirings
Some examples of well-known semirings are
- $\mathbb{F}=(\mathbb{F},+, \cdot, 0,1)$, for $\mathbb{F} \in\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$ the semiring of the numbers in \mathbb{F} with addition and multiplication,
- $\mathcal{R}_{\text {max }}=(\mathbb{N} \cup\{-\infty\}$, max $,+,-\infty, 0)$,, the max-plus (max-tropical) - $\mathcal{R}_{\text {min }}=(\mathbb{N} \cup\{\infty\}$, min, $+, \infty, 0$), the min-plus (min-tropical) semiring - $\mathbb{B}=(\{0,1\}, \vee, \wedge, 0,1)$, the Boolean semiring,
- $\mathcal{R}\left[\left(x_{i}\right) \alpha\right]=\left(R\left[\left(x_{i}\right) \alpha\right], \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$, for $\alpha \in \mathbb{N}($ resp. $\alpha=\infty)$, is the semiring of polynom
over the semiring \mathcal{R}.

Semiring Turing Machines

- Aim: Capture $\operatorname{SAT}(\mathcal{R})$ but not more.
- Allow semiring values $r \in R$ on the tape.
$-\quad$ Use a weighted transition relation
$\delta \subseteq(Q \times(\Sigma \cup R)) \times(Q \times(\Sigma \cup R)) \times\{-1,1\} \times R$.
- This is too strong! Need restrictions on δ. For each
$\left(\left(q_{1}, \sigma_{1}\right),\left(q_{2}, \sigma_{2}\right), e, r\right) \in \delta:$
- cannot write or overwrite semiring values
$\sigma_{1} \in R$ or $\sigma_{2} \in R$ implies $\sigma_{1}=\sigma_{2}$
(2) transition only with $r \in R^{\prime}$ or value under head.
(2) transition only with $r \in R^{\prime}$ or value under head:
$r \in R^{\prime}$ or $r=\sigma_{1} \in R$
- cannot differentiate semiring values:

$$
\begin{aligned}
& \sigma_{1} \in R \text { ditferentite semiring values: } \\
& \sigma_{1} \in R \text { impies that for all } \sigma_{1}^{\prime} \in R \text { we have }\left(\left(q_{1}, \sigma_{1}^{\prime}\right)\right. \text {, } \\
& \left.\left(q_{2}, \sigma_{1}^{\prime}\right), e r^{\prime}\right) \in \delta \text {, where } r^{\prime}=\sigma_{1}^{\prime} \text { if } r=\sigma_{1} \text { and else } r^{\prime}=r
\end{aligned}
$$

Semiring Turing Machine Output

Let M be an SRTM and $c=(q, w, n)$ a
configuration, where q is a state, w is the The value $v(c)$ of c w.r.t. M is

- e_{\otimes}, if there are no possible transitions
from c to another configuration
$-\bigoplus_{c}{ }_{c} c^{r} r \otimes v\left(c^{\prime}\right)$, otherwise, where $c \xrightarrow{r}$
denotes that M can transit from c to c^{\prime} denotes that M can transit from c to c^{\prime} with weight r
The output is $v\left(c_{0}\right)$, the value of the initial configuration c_{0}.
$\operatorname{NP}(\mathcal{R})$ is $v(c)$.
$\mathrm{NP}(\mathcal{R})$ is the class of all functions computable in polynomial time by an SRTM over \mathcal{R}.

Theorem: $\operatorname{NP}(\mathcal{R})$-completeness
$\operatorname{SAT}(\mathcal{R})$ is $\operatorname{NP}(\mathcal{R})$-complete with respect to polynomial transforma-
tions, for every semiring \mathcal{R}.
Further, the following problems are $\operatorname{NP}(\mathcal{R})$-complete by reduction
from SAT($\mathcal{R})$:
- Sum-of-Products
- Semiring-based Constraint Satisfaction Problems
- Algebraic Model Counting
- Algebraic Constraint Evaluation

Classical Complexity
This result gives us

- an insight into how Sum-Of-Products problems can be solved independently of how the semiring values are encoded and how addition and multiplication are given.
a machinery to approach other problems that are parameterized with semirings.
But: How hard is the problem in terms of classical complexity?
Semiring Complexity Map

Encodings

Classical model of computation
\rightarrow assume semiring values to be encoded by an injective function
$e: R \rightarrow\{0,1\}^{*}$, called encoding (function).
Complexity depends on the encoding:

- With respect to the binary encoding Knapsack is NP-hard.

Even worsee there is unary encoding Knapsack is in P.
Linear time depending on the encoding multiplication is undecidable or linear time depending on the encoding.

Sources of Complexity

- Encoding of the input

O Information retained by addition and multiplication

- $c_{1} \vee c_{2}$ over \mathbb{B} retains whether both c_{1}, c_{2} are
- $c_{1}+c_{2}$ over \mathbb{N} retains the sum of c_{1}, c_{2}
- $c_{1} x_{1}+c_{2} x_{2}$ over $\mathbb{N}\left[x_{1}, x_{2}\right]$ retains the values c_{1}, c_{2}

We consider 2 .
Epimorphisms
Let $\mathcal{R}_{i}=\left(R_{i}, \oplus_{i}, \otimes_{i}, e_{\oplus_{i}}, e_{\otimes_{i}}\right), i=1,2$ be semiring. Then an epimorphisn
Let $\mathcal{R}_{i}=\left(R_{i}, \oplus_{i}, \otimes_{i}, e_{\oplus}, e_{\otimes_{i}}\right), i=1,2$ be semiring. Then an epimorphis a a surjectur
$f\left(r \odot_{1} r^{\prime}\right)=f(r) \odot_{2} f\left(r^{\prime}\right)$ and $f\left(e_{\odot_{1}}\right)=e_{\odot}$
Intuitively, if there is an epimorphism from \mathcal{R}_{1} to \mathcal{R}_{2}, then \mathcal{R}_{1} retains at east as much information as \mathcal{R}_{2}. For an example consider Figure 3 .

Figure 3 :Visualization of the epimorphism between \mathbb{N} and \mathbb{Z}_{2} that assigns every natura
uumber 0,1 depending on whether it is even or odd.
Theorem: Epimorphisms are Reductions
Let $e_{i}\left(\mathcal{R}_{i}\right), i=1,2$ be two encoded semirings, such that - $\operatorname{SAT}\left(e_{1}\left(\mathcal{R}_{1}\right)\right.$) is in $\operatorname{FPSPACE}($ POLY $)$,
(3) there exists a polynomial time computable epimorphism
$f: e_{1}\left(R_{1}\right) \rightarrow e_{2}\left(R_{2}\right)$, and
© for each $e_{2}\left(r_{2}\right) \in e\left(R_{2}\right)$ one can compute in polynomial time $e_{1}\left(r_{1}\right)$ s.t. $f\left(e_{1}\left(r_{1}\right)\right)=e_{2}\left(r_{2}\right)$ from $e_{2}\left(r_{2}\right)$.

Then $\operatorname{SAT}\left(e_{2}\left(\mathcal{R}_{2}\right)\right.$) is counting-reducible to $\operatorname{SAT}\left(e_{1}\left(\mathcal{R}_{1}\right)\right.$).

Applying Epimorphism Reductions

- Approach: find membership results for high information retainers. See Figure 2 for an overview.
- $\left.\mathbb{N}\left(x_{i}\right)_{\infty}\right), \mathbb{B}\left[\left(x_{i}\right)_{\infty}\right]$ have epimorphisms to every commutative countable (resp. and idempotent) semiring! Unfortunately:

- Link to open complexity theoretic questions!

Finitely Generated Semirings
Unlikely to work in general: consider subclasses!

Positive Results

Let e be the encoding function that represents exponents in unary and coefficients in binary. Then

- $\operatorname{SAT}\left(e\left(\mathbb{Q}\left[\left(x_{i}\right)_{k}\right]\right)\right)$ is counting-reducible to \#SAT and \#P-hard for counting reductions.
- $\operatorname{SAT}\left(e\left(\mathbb{B}\left[\left(x_{i}\right)_{k}\right]\right)\right)$ is $\mathrm{FP}_{\|}{ }^{\mathrm{NP}}$-complete for metric reductions.
- Let $\mathcal{R}=\left(R, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)$ be a semiring
- The semiring generated by a subset $S \subseteq R$ is defined as
$\langle S\rangle_{\mathcal{R}}:=\bigcap\left\{R^{\prime} \subseteq R \mid S \subseteq R^{\prime},\left(R^{\prime}, \oplus, \otimes, e_{\oplus}, e_{\otimes}\right)\right.$ is a semiring $\}$
- \mathcal{R} is finitely generated if $\langle S\rangle_{\mathcal{R}}=R$ for $S=\left\{r_{1}, \ldots, r_{n}\right\}$.
- If \mathcal{R} is finitely generated and commutative, then there is an epimorphism from $\mathbb{N}\left[\left(x_{i}\right)_{n}\right]$ to \mathcal{R}. If \mathcal{R} is further idempotent there is even an
$\xrightarrow{\text { epimorphism from } \mathbb{B}\left[\left(x_{i}\right) n\right] \text {. }}$ Idea: Use reductions to $\operatorname{SAT}\left(\mathbb{N}\left[\left(x_{i}\right) \pi\right]\right)\left(\right.$ resp. $\left.\operatorname{SAT}\left(\mathbb{B}\left[\left(x_{i}\right) n\right]\right)\right)$!

Takeaway

- Sum-Of-Products over \mathcal{R} is $\operatorname{NP}(\mathcal{R})$-complete
- The encoding matters
- Over general semiring Sum-Of-Products is unlikely to have polynomial outputs
- There are broad classes of countable commutative (resp. and - There are broad classes of countable commutative (resp. and
idempotent) semirings s.t. Sum-Of-Products is not much harder than idempotent) semining
\#SAT (resp. SAT)

References

[1] Bacchus, F., Dalmao, S., Pitassi, T.: Solving\# sat and bayesian inference with backtracking search. JAIR 34, 391-442 (2009)
[2] Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.: Semiring-based csps and valued csps: Frameworks, properties, and comparison. Constraints 4(3), 199-240 (1999)
[3] Eiter, T., Kiesel, R.: Asp(ac): Answer set programming with algebraic constraints. arXiv preprint arXiv:2008.04008 (2020)
[4] Kimmig, A., Van den Broeck, G., De Raedt, L.: Algebraic model counting. Journal of Applied Logic 22, 46-62 (2017)

