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Sum-Of-Products [1]

• finite domain D
• functions fi : Dji → R, i = 1, . . . , n
• compute ∑

X1,...,Xm∈D

n∏
i=1

fi(~Yi), (1)

where ~Yi is a vector of variables from {X1, . . . , Xm}
• The “sum” and the “product” do not need to be the usual addition and

multiplication over the reals, but can be any addition ⊕ and
multiplication ⊗ from a semiringR = (R,⊕,⊗, e⊕, e⊗).

Semirings

A semiring R = (R,⊕,⊗, e⊕, e⊗) consists of a nonempty set R equipped
with two binary operations ⊕ and ⊗, called addition and multiplication, s.t.

(a⊕ b)⊕ c = a⊕ (b⊕ c) (a⊗ b)⊗ c = a⊗ (b⊗ c)
e⊕ ⊕ a = a = a⊕ e⊕ e⊗ ⊗ a = a = a⊗ e⊗
a⊕ b = b⊕ a

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

e⊕ ⊗ a = e⊕ = a⊗ e⊕
A semiring is commutative, if (R,⊗) is commutative, and is idempotent, if
∀r ∈ R : r⊕r = r.

Well-known Semirings

Some examples of well-known semirings are

• F = (F,+, ·, 0, 1), for F ∈ {N,Z,Q,R} the semiring of the numbers in F
with addition and multiplication,
• Rmax = (N ∪ {−∞},max,+,−∞, 0),, the max-plus (max-tropical)

semiring,
• Rmin = (N ∪ {∞},min,+,∞, 0), the min-plus (min-tropical) semiring,
• B = ({0, 1},∨,∧, 0, 1), the Boolean semiring,
• R[(xi)α] = (R[(xi)α],⊕,⊗, e⊕, e⊗), for α ∈ N (resp. α =∞), is the

semiring of polynomials with variables x1, . . . , xα (resp. x1, x2, . . . )
over the semiringR.

Motivation

For some semirings the associated Sum-Of-Products problem and the
complexity thereof is well-known:

Problem Instance Semiring Complexity

. SAT
∨

a1,...,an∈{0,1}

m∧
j=1

Cj B NP-comp.

. WEIGHTEDMAXSAT max
a1,...,an∈{0,1}

m∑
j=1

wj1Cj Rmax OPTP-comp.

. #SAT
∑

a1,...,an∈{0,1}

m∏
j=1

1Cj N #P-comp.

There are more Sum-Of-Products problems that are also relevant for
which the complexity has yet to be considered.

Problem Semiring Complexity
. Most Probable Explanation ([0, 1],max, ·, 0, 1) ?
. Sensitivity Analysis (R≥0[V ],+, ·, 0, 1) ?
. Gradient Computation GRAD ?
. SUMPROD (R,⊕,⊗, e⊕, e⊗) ?

Apart from instances over fixed semirings, there are also frameworks,
whose semantics was parameterized with semirings to allow quantita-
tive reasoning in a general form [2–4].

Semiring Turing Machines

• Aim: Capture SAT(R) but not more.
• Allow semiring values r ∈ R on the tape.
• Use a weighted transition relation
δ ⊆ (Q× (Σ ∪R))× (Q× (Σ ∪R))× {−1, 1}×R.
• This is too strong! Need restrictions on δ. For each

((q1, σ1), (q2, σ2), e, r) ∈ δ:
1 cannot write or overwrite semiring values:

σ1 ∈ R or σ2 ∈ R implies σ1 = σ2
2 transition only with r ∈ R′ or value under head:

r ∈ R′ or r = σ1 ∈ R
3 cannot differentiate semiring values:

σ1 ∈ R implies that for all σ′1 ∈ R we have ((q1, σ′1),
(q2, σ′1), e, r′) ∈ δ, where r′ = σ′1 if r = σ1 and else r′ = r

Semiring Turing Machine Output

Let M be an SRTM and c = (q, w, n) a
configuration, where q is a state, w is the
string on the tape and n is the head position
The value v(c) of c w.r.t. M is

• e⊗, if there are no possible transitions
from c to another configuration
•
⊕

c
r→c′r⊗v(c′), otherwise, where c r→ c′

denotes that M can transit from c to c′

with weight r

The output is v(c0), the value of the initial
configuration c0.
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Figure 1:A computation tree over N.
Each transition c r→ c′ is annotated
with its weight r and each configu-
ration c is annotated with its value
v(c).

NP(R) is the class of all functions computable in polynomial time by an
SRTM overR.

Theorem: NP(R)-completeness

SAT(R) is NP(R)-complete with respect to polynomial transforma-
tions, for every semiringR.
Further, the following problems are NP(R)-complete by reduction
from SAT(R):

• Sum-of-Products [1]
• Semiring-based Constraint Satisfaction Problems [2]
• Algebraic Model Counting [4]
• Algebraic Constraint Evaluation [3]

Classical Complexity

This result gives us

• an insight into how Sum-Of-Products problems can be solved
independently of how the semiring values are encoded and how addition
and multiplication are given.
• a machinery to approach other problems that are parameterized with

semirings.

But: How hard is the problem in terms of classical complexity?

Semiring Complexity Map
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Figure 2:Epimorphisms f : R1 → R2 between semirings, indicated by arrows R1 →
R2. Relation of complexity classes C and semiringsR, indicated by dotted lines C R.

Encodings

• Classical model of computation
↪→ assume semiring values to be encoded by an injective function
e : R→ {0, 1}∗, called encoding (function).
• Complexity depends on the encoding:
• With respect to the binary encoding Knapsack is NP-hard.
• With respect to the unary encoding Knapsack is in P.
• Even worse, there is a semiring whose multiplication is undecidable or

linear time depending on the encoding.

Sources of Complexity

1 Encoding of the input
2 Information retained by addition and multiplication:
• c1 ∨ c2 over B retains whether both c1, c2 are 0
• c1 + c2 over N retains the sum of c1, c2
• c1x1 + c2x2 over N[x1, x2] retains the values c1, c2

We consider 2.

Epimorphisms

LetRi = (Ri,⊕i,⊗i, e⊕i, e⊗i), i = 1, 2 be semiring. Then an epimorphism
is a surjective function f : R1→ R2 such that for � = ⊕,⊗

f (r �1 r
′) = f (r)�2 f (r′) and f (e�1) = e�2.

Intuitively, if there is an epimorphism from R1 to R2, then R1 retains at
least as much information asR2. For an example consider Figure 3.
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Figure 3:Visualization of the epimorphism between N and Z2 that assigns every natural
number 0, 1 depending on whether it is even or odd.

Theorem: Epimorphisms are Reductions

Let ei(Ri), i = 1, 2 be two encoded semirings, such that

1 SAT(e1(R1)) is in FPSPACE(POLY),
2 there exists a polynomial time computable epimorphism
f : e1(R1)→ e2(R2), and

3 for each e2(r2) ∈ e(R2) one can compute in polynomial time e1(r1)
s.t. f (e1(r1)) = e2(r2) from e2(r2).

Then SAT(e2(R2)) is counting-reducible to SAT(e1(R1)).

Applying Epimorphism Reductions

• Approach: find membership results for high information retainers. See
Figure 2 for an overview.
• N[(xi)∞],B[(xi)∞] have epimorphisms to every commutative countable

(resp. and idempotent) semiring! Unfortunately:

Negative Results

LetR = N[(xi)∞] (resp. R = B[(xi)∞]).
The following are equivalent:

1 There is an encoding function e forR s.t.

1) ‖JαKR(I)‖e is polynomial in the size of α, I,

2) we can extract the coefficient of xj1i1 ...x
jn
in

from e(r) in polynomial
time in ‖r‖e, and

3) ‖xi‖e is polynomial in i,
2 #P ⊆ FP/poly (resp. NP ⊆ P/poly).

• Link to open complexity theoretic questions!

Finitely Generated Semirings

Unlikely to work in general: consider subclasses!

Positive Results

Let e be the encoding function that represents exponents in unary and
coefficients in binary. Then

• SAT(e(Q[(xi)k])) is counting-reducible to #SAT and #P-hard for
counting reductions.
• SAT(e(B[(xi)k])) is FPNP

‖ -complete for metric reductions.

• LetR = (R,⊕,⊗, e⊕, e⊗) be a semiring.
• The semiring generated by a subset S ⊆ R is defined as

〈S〉R :=
⋂
{R′ ⊆ R | S ⊆ R′, (R′,⊕,⊗, e⊕, e⊗) is a semiring}.

• R is finitely generated if 〈S〉R = R for S = {r1, . . . , rn}.
• IfR is finitely generated and commutative, then there is an epimorphism

from N[(xi)n] toR. IfR is further idempotent there is even an
epimorphism from B[(xi)n].
↪→ Idea: Use reductions to SAT(N[(xi)n]) (resp. SAT(B[(xi)n]))!

Takeaway

• Sum-Of-Products overR is NP(R)-complete
• The encoding matters
• Over general semiring Sum-Of-Products is unlikely to have

polynomial outputs
• There are broad classes of countable commutative (resp. and

idempotent) semirings s.t. Sum-Of-Products is not much harder than
#SAT (resp. SAT)
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