

Der Wissenschaftsfonds.

Sum-Of-Products [1]

- finite domain \mathcal{D}
- functions $f_i: \mathcal{D}^{j_i} \to R, i = 1, \dots, n$
- compute

$$\sum_{1,\dots,X_m \in \mathcal{D}} \prod_{i=1}^n f_i(\vec{Y}_i),\tag{1}$$

where \overline{Y}_i is a vector of variables from $\{X_1, \ldots, X_m\}$

• The "sum" and the "product" do not need to be the usual addition and multiplication over the reals, but can be any addition \oplus and multiplication \otimes from a semiring $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$.

Semirings

A semiring $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$ consists of a nonempty set R equipped with two binary operations \oplus and \otimes , called addition and multiplication, s.t.

 $(a \oplus b) \oplus c = a \oplus (b \oplus c) \ (a \otimes b) \otimes c = a \otimes (b \otimes c)$ $e_{\oplus} \oplus a = a = a \oplus e_{\oplus} \qquad e_{\otimes} \otimes a = a = a \otimes e_{\otimes}$ $a \oplus b = b \oplus a$ $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$ $e_{\oplus} \otimes a = e_{\oplus} = a \otimes e_{\oplus}$

A semiring is *commutative*, if (R, \otimes) is commutative, and is *idempotent*, if $\forall r \in R : r \oplus r = r.$

Well-known Semirings

Some examples of well-known semirings are

- $\mathbb{F} = (\mathbb{F}, +, \cdot, 0, 1)$, for $\mathbb{F} \in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$ the semiring of the numbers in \mathbb{F} with addition and multiplication,
- $\mathcal{R}_{\max} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0),$, the max-plus (max-tropical) semiring,
- $\mathcal{R}_{\min} = (\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$, the min-plus (min-tropical) semiring,
- $\mathbb{B} = (\{0, 1\}, \lor, \land, 0, 1)$, the Boolean semiring,
- $\mathcal{R}[(x_i)_{\alpha}] = (R[(x_i)_{\alpha}], \oplus, \otimes, e_{\oplus}, e_{\otimes}), \text{ for } \alpha \in \mathbb{N} \text{ (resp. } \alpha = \infty), \text{ is the } \alpha = \infty)$ semiring of polynomials with variables x_1, \ldots, x_{α} (resp. x_1, x_2, \ldots) over the semiring \mathcal{R} .

Motivation

For some semirings the associated Sum-Of-Products problem and the complexity thereof is well-known:			
Problem	Instance	Semiring	Complexity
⊳ SAT	$\bigvee \qquad \bigwedge^m C_j$	\mathbb{B}	NP-comp.
► WEIGHTEDMAXSAT	$a_{1},,a_{n} \in \{0,1\} j=1$ $\max_{u_{1},,u_{n} \in \{0,1\}} \sum_{j=1}^{m} w_{j} \mathbb{1}_{C_{j}}$	$\mathcal{R}_{ ext{max}}$	OptP-comp
⊳ #SAT	$\sum_{a_1,\dots,a_n \in \{0,1\}} \prod_{j=1}^m \mathbb{1}_{C_j}$	\mathbb{N}	#P-comp.
There are more Sum-Of-Products problems that are also relevant for which the complexity has yet to be considered.			
Problem	Semiring	Com	plexity
▷ Most Probable Expl	anation $([0, 1], \max, \cdot, 0)$	(0,1)	?
Sensitivity Analysis	$(\mathbb{R}_{\geq 0}[\mathcal{V}], +, \cdot, 0)$	(0, 1)	?
Gradient Computati	on <i>GRAD</i>		?
▷ SUMPROD	$(R,\oplus,\otimes,e_\oplus,e_\oplus)$	$e_{\otimes})$?
Apart from instances over fixed semirings, there are also frameworks,			

whose semantics was parameterized with semirings to allow quantitative reasoning in a general form [2–4].

On the Complexity of Sum-Of-Products Problems over Semirings

Thomas Eiter & Rafael Kiesel

Vienna University of Technology, Vienna, Austria {thomas.eiter, rafael.kiesel}@tuwien.ac.at

funded by FWF project W1255-N23

This result gives us

- an insight into how Sum-Of-Products problems can be solved
- a machinery to approach other problems that are parameterized with
- But: How hard is the problem in terms of classical complexity?

Applying Epimorphism Reductions

• Approach: find membership results for high information retainers. See

• $\mathbb{N}[(x_i)_{\infty}], \mathbb{B}[(x_i)_{\infty}]$ have epimorphisms to every commutative countable (resp. and idempotent) semiring! Unfortunately:

Negative Results

Let $\mathcal{R} = \mathbb{N}[(x_i)_{\infty}]$ (resp. $\mathcal{R} = \mathbb{B}[(x_i)_{\infty}]$). The following are equivalent:

1 There is an encoding function e for \mathcal{R} s.t.

1) $\|\|\alpha\|_{\mathcal{R}}(\mathcal{I})\|_{e}$ is polynomial in the size of α, \mathcal{I} ,

2) we can extract the coefficient of $x_{i_1}^{j_1} \dots x_{i_n}^{j_n}$ from e(r) in polynomial

3) $||x_i||_e$ is polynomial in *i*,

2 $\#P \subseteq FP/poly$ (resp. NP $\subseteq P/poly$).

• Link to open complexity theoretic questions!

Finitely Generated Semirings

Unlikely to work in general: consider subclasses!

Positive Results

Let e be the encoding function that represents exponents in unary and

• SAT $(e(\mathbb{Q}[(x_i)_k]))$ is counting-reducible to #SAT and #P-hard for

• SAT $(e(\mathbb{B}[(x_i)_k]))$ is FP^{NP}_{II}-complete for metric reductions.

• Let $\mathcal{R} = (R, \oplus, \otimes, e_{\oplus}, e_{\otimes})$ be a semiring.

• The semiring generated by a subset $S \subseteq R$ is defined as

 $\langle S \rangle_{\mathcal{R}} := \bigcap \{ R' \subseteq R \mid S \subseteq R', (R', \oplus, \otimes, e_{\oplus}, e_{\otimes}) \text{ is a semiring} \}.$

• \mathcal{R} is finitely generated if $\langle S \rangle_{\mathcal{R}} = R$ for $S = \{r_1, \ldots, r_n\}$.

• If \mathcal{R} is finitely generated and commutative, then there is an epimorphism from $\mathbb{N}[(x_i)_n]$ to \mathcal{R} . If \mathcal{R} is further idempotent there is even an

 \hookrightarrow Idea: Use reductions to SAT($\mathbb{N}[(x_i)_n]$) (resp. SAT($\mathbb{B}[(x_i)_n]$))!

Takeaway

• Sum-Of-Products over \mathcal{R} is NP(\mathcal{R})-complete

• Over general semiring Sum-Of-Products is unlikely to have

• There are broad classes of countable commutative (resp. and idempotent) semirings s.t. Sum-Of-Products is not much harder than

References

[1] Bacchus, F., Dalmao, S., Pitassi, T.: Solving# sat and bayesian inference with backtracking search. JAIR 34, 391–442 (2009)

[2] Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.: Semiring-based csps and valued csps: Frameworks, properties, and comparison. Constraints **4**(3), 199–240 (1999)

[3] Eiter, T., Kiesel, R.: Asp(ac): Answer set programming with algebraic constraints. arXiv preprint arXiv:2008.04008 (2020)

[4] Kimmig, A., Van den Broeck, G., De Raedt, L.: Algebraic model counting. Journal of Applied Logic **22**, 46–62 (2017)