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Sum-Of-Products [1]

e finite domain D
e functions f; : DJi — Ri=1,....n

e compute
> 1AM, (1)

where Y is a vector of variables from { X7, ..., X}

e The “sum” and the “product” do not need to be the usual addition and
multiplication over the reals, but can be any addition & and
multiplication ® from a semiring R = (R, P, ®, em, ex).

Semirings

A semiring R = (R, ®, ®, eq, eg) consists of a nonempty set R equipped
with two binary operations ¢ and ®, called addition and multiplication, s.t.
(a®b)Pc=a®(bPc) (a®RD)Rc=a® (bR c)

eoDa=a=adeg e ®a=a=a® ey
abb=bBa
a®@Mbdc)=(a®b) @ (a®c)
(aBb)®c=(a®c)D (bR c)
ep®a=ep =aQeq
A semiring is commutative, if (R, ®) is commutative, and is idempotent, if
Vre R:rdr =r.

Well-known Semirings

Some examples of well-known semirings are
o F=(F,+,-,0,1), forF € {N,Z,Q,R} the semiring of the numbers in [F
with addition and multiplication,

* Rpax = (NU {—o00}, max, +, —00, 0),, the max-plus (max-tropical)
semiring,

* Rupin = (NU {00}, min, +, 0o, 0), the min-plus (min-tropical) semiring,
e B=({0,1},V,A,0,1), the Boolean semiring,

o Rl(z;)a] = (R[(z;)a], ®, ®, eq, ex), for a € N (resp. a = 00), is the
semiring of polynomials with variables z1, ..., o (resp. 1,92, ...)
over the semiring K.

Motivation

For some semirings the associated Sum-Of-Products problem and the
complexity thereof 1s well-known:

Problem Instance

Semiring Complexit

m
> SAT V.  AG B

a1,....an€{0,1} j=1

NP-comp.

> WEIGHTEDMAXSAT max

at,...,an€{0,1} =i

m
11 e A

a1,-...an€{0,1} j=1

#P-comp.

> #SAT Z

There are more Sum-Of-Products problems that are also relevant for
which the complexity has yet to be considered.

Problem Semiring Complexity
> Most Probable Explanation (|0, 1|, max, -, 0, 1) ?
> Sensitivity Analysis (R>o[V],+,-,0,1) ?
> Gradient Computation GRAD ?
> SUMPROD (R, P, ®, eq, ex) ?

Apart from instances over fixed semirings, there are also frameworks,
whose semantics was parameterized with semirings to allow quantita-
tive reasoning in a general form [2—4].
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Semiring Turing Machines

e Aim: Capture SAT(R) but not more.
e Allow semiring values € R on the tape.

e Use a weighted transition relation
dC(QX(XUR)) X (Qx(XUR))x{—-1,1}xR.
e This is too strong! Need restrictions on 0. For each
((g1,01), (g2, 02),€,7) € 0
© cannot write or overwrite semiring values:
o1 € Roroo € Rimplies 01 = 09
© transition only with r € R’ or value under head:
re Rorr=01€R
® cannot differentiate semiring values:

o1 € R implies that for all 01 € R we have ((q1, ai),
(q2,01),€,7) € 5, where 7’ = o if r = 0y and else 7’ =7

Semiring Turing Machine Output

Let M be an SRTM and ¢ = (¢, w,n) a

configuration, where ¢ 1s a state, w 1s the co 2-34+2-1
string on the tape and n 1s the head position /N
The value v(c) of ¢ w.r.t. M is 2 2
® eg, 1f there are no possible transitions / A\
: 0.1 3-1 0.0 1-1
from c to another configuration
* @D 1, r@v(c), otherwise, where = 3 1
denotes that M/ can transit from c to ¢’
with weight r €0.1.0 1 €0.0.0 1

The output is v(cg), the value of the initial
configuration cj.

Figure 1:A computation tree over N.
Each transition ¢ — ¢ is annotated
with its weight 7 and each configu-
ration c i1s annotated with its value
v(c).

NP(R) 1s the class of all functions computable in polynomial time by an
SRTM over R.

Theorem: NP(R)-completeness

SAT(R) i1s NP(R)-complete with respect to polynomial transforma-
tions, for every semiring ..

Further, the following problems are NP(R)-complete by reduction
from SAT(R):

¢ Sum-of-Products
e Semiring-based Constraint Satisfaction Problems
e Algebraic Model Counting

e Algebraic Constraint Evaluation

Classical Complexity

This result gives us

¢ an insight into how Sum-Of-Products problems can be solved
independently of how the semiring values are encoded and how addition
and multiplication are given.

¢ a machinery to approach other problems that are parameterized with
semirings.

But: How hard 1s the problem in terms of classical complexity?

-complete

GAPP-complete

OPTP-complete

#P-complete

NP-complete

MobD;P-hard 2.

Figure 2:Epimorphisms f : R — Rs between semirings, indicated by arrows R; —

Encodings

e Classical model of computation
— assume semiring values to be encoded by an injective function
e: R — {0,1}%, called encoding (function).

e Complexity depends on the encoding:

e With respect to the binary encoding Knapsack 1s NP-hard.
e With respect to the unary encoding Knapsack 1s in P.

e Even worse, there 1s a semiring whose multiplication 1s undecidable or
linear time depending on the encoding.

Sources of Complexity

©® Encoding of the input

® Information retained by addition and multiplication:
® c1 V ¢ over B retains whether both ¢y, ¢o are 0

® c1 + ¢ over N retains the sum of cq, ¢
® c1x1 + coxg over N|x1, xo] retains the values ¢, ¢
We consider 2.

Epimorphisms

Let R; = (R;, ®;, ®;, eq;, €@;),t = 1,2 be semiring. Then an epimorphism
is a surjective function f : R{ — R such that for ® = &, ®

flroir’) = f(r) @ f(r') and f(eq,) = ea,.

Intuitively, if there i1s an epimorphism from R to R9, then R retains at
least as much information as Ro. For an example consider Figure 3.

1 0
/T\\ /T\\

Figure 3:Visualization of the epimorphism between N and Z, that assigns every natural
number 0, 1 depending on whether it is even or odd.

Theorem: Epimorphisms are Reductions

Let e;(R;),7 = 1,2 be two encoded semirings, such that

® SAT(e1(Rq)) is in FPSPACE(POLY),

® there exists a polynomial time computable epimorphism
f:e1(R1) — ea(R2), and

© for each es(rg) € e(R2) one can compute in polynomial time e1(r1)
s.t. f(e1(r1)) = ea(ro) from ey(rs).
Then SAT (e2(R2)) is counting-reducible to SAT (e1(R1)).

[ |
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COMPUTER SCIENCE

Applying Epimorphism Reductions

e Approach: find membership results for high information retainers. See
Figure 2 for an overview.

o N[(z;)00], B[(%;)00] have epimorphisms to every commutative countable
(resp. and idempotent) semiring! Unfortunately:

Negative Results

Let R = N[(2;)oc] (resp. R = B[(7;)o0])-
The following are equivalent:
© There is an encoding function e for R s.t.

1) ||[a]w(Z)]|e is polynomial in the size of «, Z,

JL__ 2" from e(r) in polynomial

2) we can extract the coefficient of x i T

time in ||r||¢, and
3) ||z;]|e is polynomial in i,
® #P C FP/poly (resp. NP C P/poly).

e Link to open complexity theoretic questions!

Finitely Generated Semirings

Unlikely to work in general: consider subclasses!

Positive Results

Let e be the encoding function that represents exponents in unary and
coefficients in binary. Then

o SAT(e(Q[(x;)z])) is counting-reducible to #S AT and #P-hard for
counting reductions.

o SAT(e(B|(z;)i])) is FPh\IP—complete for metric reductions.

o LetR =(R,®,®,eq, eg) be a semiring.
e The semiring generated by a subset S C R is defined as

(S)p = ﬂ{R’ CR|SCR,(R,® ®, e, ex)is asemiring}.

o R is finitely generated if (S)p = Rfor S ={ry,...,rp}.

e If R 1s finitely generated and commutative, then there 1s an epimorphism
from N|(x;),| to R. If R is further idempotent there is even an
epimorphism from B|(z;);].

— Idea: Use reductions to SAT(N|(x;)n]) (resp. SAT(B|(x;)n)))!

¢ Sum-Of-Products over ‘R 1s NP(R)-complete
e The encoding matters

e Over general semiring Sum-Of-Products 1s unlikely to have
polynomial outputs

e There are broad classes of countable commutative (resp. and

idempotent) semirings s.t. Sum-Of-Products 1s not much harder than
#SAT (resp. SAT)
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